Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 78(1): 283-294, feb. 2022.
Artigo em Inglês | IBECS | ID: ibc-215889

RESUMO

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts. (AU)


Assuntos
Humanos , Restrição Calórica , Metabolômica , Cardiomegalia , Peróxido de Hidrogênio , Isoproterenol , Mitocôndrias , Estresse Oxidativo
2.
J Physiol Biochem ; 78(1): 283-294, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35023023

RESUMO

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts.


Assuntos
Restrição Calórica , Lipidômica , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle , Humanos , Peróxido de Hidrogênio/metabolismo , Isoproterenol/metabolismo , Isoproterenol/toxicidade , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo
3.
Curr Mol Pharmacol ; 13(1): 76-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31340743

RESUMO

BACKGROUND: Cardiac hypertrophy involves marked wall thickening or chamber enlargement. If sustained, this condition will lead to dysfunctional mitochondria and oxidative stress. Mitochondria have ATP-sensitive K+ channels (mitoKATP) in the inner membrane that modulate the redox status of the cell. OBJECTIVE: We investigated the in vivo effects of mitoKATP opening on oxidative stress in isoproterenol- induced cardiac hypertrophy. METHODS: Cardiac hypertrophy was induced in Swiss mice treated intraperitoneally with isoproterenol (ISO - 30 mg/kg/day) for 8 days. From day 4, diazoxide (DZX - 5 mg/kg/day) was used in order to open mitoKATP (a clinically relevant therapy scheme) and 5-hydroxydecanoate (5HD - 5 mg/kg/day) or glibenclamide (GLI - 3 mg/kg/day) were used as mitoKATP blockers. RESULTS: Isoproterenol-treated mice had elevated heart weight/tibia length ratios (HW/TL). Additionally, hypertrophic hearts had elevated levels of carbonylated proteins and Thiobarbituric Acid Reactive Substances (TBARS), markers of protein and lipid oxidation. In contrast, mitoKATP opening with DZX avoided ISO effects on gross hypertrophic markers (HW/TL), carbonylated proteins and TBARS, in a manner reversed by 5HD and GLI. Moreover, DZX improved mitochondrial superoxide dismutase activity. This effect was also blocked by 5HD and GLI. Additionally, ex vivo treatment of isoproterenol- induced hypertrophic cardiac tissue with DZX decreased H2O2 production in a manner sensitive to 5HD, indicating that this drug also acutely avoids oxidative stress. CONCLUSION: Our results suggest that diazoxide blocks oxidative stress and reverses cardiac hypertrophy. This pharmacological intervention could be a potential therapeutic strategy to prevent oxidative stress associated with cardiac hypertrophy.


Assuntos
Cardiomegalia/tratamento farmacológico , Diazóxido/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Canais de Potássio/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Diazóxido/farmacologia , Avaliação Pré-Clínica de Medicamentos , Transporte de Íons/efeitos dos fármacos , Isoproterenol/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Potássio/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/análise
4.
Sci Rep ; 7(1): 15434, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133820

RESUMO

Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.


Assuntos
Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Glicólise/fisiologia , Mitocôndrias/química , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Oxirredução , Estresse Oxidativo/fisiologia , Oxigênio/análise , Oxigênio/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar
5.
J Cardiovasc Pharmacol ; 65(4): 393-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25850726

RESUMO

Cardiac hypertrophy is a chronic complex disease that occurs in response to hemodynamic load and is accompanied by oxidative stress and mitochondrial dysfunction. Mitochondrial ATP-sensitive K channels (mitoKATPs) have previously been shown to prevent oxidative cardiac damage under conditions of ischemia/reperfusion. However, the effect of these channels on cardiac hypertrophy has not been tested to date. In this study, we show that treatment of Swiss mice with isoproterenol (30 mg·kg·d) induces cardiac hypertrophy while significantly decreasing the levels of reduced protein thiols, glutathione, catalase, and superoxide dismutase activity, indicative of a condition of oxidative imbalance. Treatment with diazoxide (a mitoKATP opener, 5 mg·kg·d) normalized the levels of protein thiols and reduced glutathione, rescued superoxide dismutase activity, and significantly prevented cardiac hypertrophy. The protective effects of diazoxide were mitigated by the mitoKATP blockers 5-hydroxydecanoate (5 mg·kg·d) and glibenclamide (3 mg·kg·d), demonstrating that they were related to activation of the channel. Taken together, our results establish that mitoKATP activation promotes very robust prevention of cardiac hypertrophy and associated oxidative imbalance and suggest that these channels can be important drug targets for the pharmacological control of cardiac hypertrophy.


Assuntos
Cardiomegalia , Diazóxido/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Canais de Potássio/metabolismo , Animais , Antioxidantes/farmacologia , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Camundongos , Mitocôndrias Cardíacas/metabolismo , Resultado do Tratamento , Vasodilatadores/farmacologia
6.
Life Sci ; 87(5-6): 139-46, 2010 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-20540954

RESUMO

AIMS: In the present work we investigated the in vitro effect of cis-4-decenoic acid, the pathognomonic metabolite of medium-chain acyl-CoA dehydrogenase deficiency, on various parameters of bioenergetic homeostasis in rat brain mitochondria. MAIN METHODS: Respiratory parameters determined by oxygen consumption were evaluated, as well as membrane potential, NAD(P)H content, swelling and cytochrome c release in mitochondrial preparations from rat brain, using glutamate plus malate or succinate as substrates. The activities of citric acid cycle enzymes were also assessed. KEY FINDINGS: cis-4-decenoic acid markedly increased state 4 respiration, whereas state 3 respiration and the respiratory control ratio were decreased. The ADP/O ratio, the mitochondrial membrane potential, the matrix NAD(P)H levels and aconitase activity were also diminished by cis-4-decenoic acid. These data indicate that this fatty acid acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor. cis-4-decenoic acid also provoked a marked mitochondrial swelling when either KCl or sucrose was used in the incubation medium and also induced cytochrome c release from mitochondria, suggesting a non-selective permeabilization of the inner mitochondrial membrane. SIGNIFICANCE: It is therefore presumed that impairment of mitochondrial homeostasis provoked by cis-4-decenoic acid may be involved in the brain dysfunction observed in medium-chain acyl-CoA dehydrogenase deficient patients.


Assuntos
Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/toxicidade , Mitocôndrias/efeitos dos fármacos , Acil-CoA Desidrogenase/deficiência , Animais , Encéfalo/patologia , Citocromos c/efeitos dos fármacos , Citocromos c/metabolismo , Homeostase/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , NADP/efeitos dos fármacos , NADP/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
7.
Campinas; s.n; ago. 1999. 110 p. ilus, tab, graf.
Tese em Português | LILACS | ID: lil-313516

RESUMO

A exposição de mitocôndrias a quantidades excessivas de Ca2+ pode levar a uma permeabilização não seletiva da membrana mitocondrial interna, conhecida como transição de permeabilidade mitocondrial (TPM). Estudos indicam que a TPM pode desencadear tanto a morte celular programada (apoptose) quanto acidental (necrose), e é inibida pela proteína antiapoptótica Bcl-2. Além disso, a apoptose e necrose envolvem processos de estresse oxidativo celular. Neste trabalho, integramos essas duas linhas de pesquisa, demonstrando que a permeabilização mitocondrial associada à TPM ocorre secundariamente à oxidação de proteínas de membrana, causada por espécies reativas de oxigêncio geradas pela organela na presença de Ca2+. Nossos experimentos comprovam que a TPM pode ser inibida por catalase e peroxidases tiólicas como a tiorredoxina peroxidase e ebselen. Verificamos também que células hiperexpressam Bcl-2 são resistentes à TPM induzida por estresse oxidativo mitocondrial, mas não pelo óxido de fenil arsina, que se liga diretamente a grupamentos tiólicos de proteínas. Além disso, mitocôndrias que hiperexpressam Bcl-2 tem maior resistência à oxidação de NAD(P)H. Deste modo, demonstramos que a permeabilização mitocondrial associada à TPM é causada por espécies reativas de oxigênio. O Bcl-2, que aumenta o poder redutor celular, previne a TPM por aumentar a capacidade redutora da mitocôndria.


Assuntos
Técnicas In Vitro , Mitocôndrias , Estresse Oxidativo , Permeabilidade , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...