Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8009): 736-740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658684

RESUMO

Deployed optical clocks will improve positioning for navigational autonomy1, provide remote time standards for geophysical monitoring2 and distributed coherent sensing3, allow time synchronization of remote quantum networks4,5 and provide operational redundancy for national time standards. Although laboratory optical clocks now reach fractional inaccuracies below 10-18 (refs. 6,7), transportable versions of these high-performing clocks8,9 have limited utility because of their size, environmental sensitivity and cost10. Here we report the development of optical clocks with the requisite combination of size, performance and environmental insensitivity for operation on mobile platforms. The 35 l clock combines a molecular iodine spectrometer, fibre frequency comb and control electronics. Three of these clocks operated continuously aboard a naval ship in the Pacific Ocean for 20 days while accruing timing errors below 300 ps per day. The clocks have comparable performance to active hydrogen masers in one-tenth the volume. Operating high-performance clocks at sea has been historically challenging and continues to be critical for navigation. This demonstration marks a significant technological advancement that heralds the arrival of future optical timekeeping networks.

2.
Opt Lett ; 45(13): 3677-3680, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630928

RESUMO

We demonstrate mid-infrared (MIR) frequency combs at 10 GHz repetition rate via intra-pulse difference-frequency generation (DFG) in quasi-phase-matched nonlinear media. Few-cycle pump pulses (≲15fs, 100 pJ) from a near-infrared electro-optic frequency comb are provided via nonlinear soliton-like compression in photonic-chip silicon-nitride waveguides. Subsequent intra-pulse DFG in periodically poled lithium niobate waveguides yields MIR frequency combs in the 3.1-4.8 µm region, while orientation-patterned gallium phosphide provides coverage across 7-11 µm. Cascaded second-order nonlinearities simultaneously provide access to the carrier-envelope-offset frequency of the pump source via in-line f-2f nonlinear interferometry. The high-repetition rate MIR frequency combs introduced here can be used for condensed phase spectroscopy and applications such as laser heterodyne radiometry.

3.
Opt Lett ; 45(9): 2660-2663, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356840

RESUMO

We report an all-fiber approach to generating sub-2-cycle pulses at 2 µm and a corresponding octave-spanning optical frequency comb. Our configuration leverages mature erbium:fiber laser technology at 1.5 µm to provide a seed pulse for a thulium-doped fiber amplifier that outputs 330 mW average power at a 100 MHz repetition rate. Following amplification, nonlinear self-compression in fiber decreases the pulse duration to 9.5 fs, or 1.4 optical cycles. The spectrum of the ultrashort pulse spans from 1 to beyond 2.4 µm and enables direct measurement of the carrier-envelope offset frequency. Our approach employs only commercially available fiber components, resulting in a design that is easy to reproduce in the larger community. As such, this system should be useful as a robust frequency comb source in the near-infrared or as a pump source to generate mid-infrared frequency combs.

4.
Phys Rev Lett ; 124(13): 133904, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302192

RESUMO

The mid-infrared atmospheric window of 3-5.5 µm holds valuable information regarding molecular composition and function for fundamental and applied spectroscopy. Using a robust, mode-locked fiber-laser source of <11 fs pulses in the near infrared, we explore quadratic (χ^{(2)}) nonlinear optical processes leading to frequency comb generation across this entire mid-infrared atmospheric window. With experiments and modeling, we demonstrate intrapulse difference frequency generation that yields few-cycle mid-infrared pulses in a single pass through periodically poled lithium niobate. Harmonic and cascaded χ^{(2)} nonlinearities further provide direct access to the carrier-envelope offset frequency of the near infrared driving pulse train. The high frequency stability of the mid-infrared frequency comb is exploited for spectroscopy of acetone and carbonyl sulfide with simultaneous bandwidths exceeding 11 THz and with spectral resolution as high as 0.003 cm^{-1}. The combination of low noise and broad spectral coverage enables detection of trace gases with concentrations in the part-per-billion range.

5.
Opt Lett ; 45(5): 1248-1251, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108817

RESUMO

We report on the development of a high-power mid-infrared frequency comb with 100 MHz repetition rate and 100 fs pulse duration. Difference frequency generation is realized between two branches derived from an Er:fiber comb, amplified separately in Yb:fiber and Er:fiber amplifiers. Average powers of 6.7 W and 14.9 W are generated in the 2.9 µm idler and 1.6 µm signal, respectively. With high average power, excellent beam quality, and passive carrier-envelope phase stabilization, this light source is a promising platform for generating broadband frequency combs in the far infrared, visible, and deep ultraviolet.

6.
Sci Adv ; 5(6): eaaw8794, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31187063

RESUMO

Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field-resolved detection at video rates. The ultrashort pulses correspond to laser frequency combs that span 3 to 27 µm (370 to 3333 cm-1), and are measured with dynamic range of >106 and spectral resolution as high as 0.003 cm-1. We highlight the brightness and coherence of our apparatus with gas-, liquid-, and solid-phase spectroscopy that extends over spectral bandwidths comparable to thermal or infrared synchrotron sources. This unique combination enables powerful avenues for rapid detection of biological, chemical, and physical properties of matter with molecular specificity.

7.
Opt Lett ; 43(17): 4220-4223, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160756

RESUMO

We demonstrate wide-band frequency down-conversion to the mid-infrared (MIR) using four-wave mixing (FWM) of near-infrared (NIR) femtosecond-duration pulses from an Er:fiber laser, corresponding to 100 THz spectral translation. Photonic-chip-based silicon nitride waveguides provide the FWM medium. Engineered dispersion in the nanophotonic geometry and the wide transparency range of silicon nitride enable large-detuning FWM phase-matching and results in tunable MIR from 2.6 to 3.6 µm on a single chip with 100-pJ-scale pump-pulse energies. Additionally, we observe up to 25 dB broadband parametric gain for NIR pulses when the FWM process is operated in a frequency up-conversion configuration. Our results demonstrate how integrated photonic circuits pumped with fiber lasers could realize multiple nonlinear optical phenomena on the same chip and lead to engineered synthesis of broadband, tunable, and coherent light across the NIR and MIR wavelength bands.

8.
Opt Lett ; 43(8): 1678-1681, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652338

RESUMO

We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-χ(2) nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive wave generation in the 2.5-3 µm region and intrapulse difference frequency generation in the 4-5 µm region. By engineering the quasi-phase-matched grating profiles, tunable, narrowband MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment-and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.

9.
Phys Rev Lett ; 120(5): 053903, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481199

RESUMO

Supercontinuum generation (SCG) in integrated photonic waveguides is a versatile source of broadband light, and the generated spectrum is largely determined by the phase-matching conditions. Here we show that quasi-phase-matching via periodic modulations of the waveguide structure provides a useful mechanism to control the evolution of ultrafast pulses during supercontinuum generation. We experimentally demonstrate a quasi-phase-matched supercontinuum to the TE_{20} and TE_{00} waveguide modes, which enhances the intensity of the SCG in specific spectral regions by as much as 20 dB. We utilize higher-order quasi-phase-matching (up to the 16th order) to enhance the intensity in numerous locations across the spectrum. Quasi-phase-matching adds a unique dimension to the design space for SCG waveguides, allowing the spectrum to be engineered for specific applications.

10.
Opt Express ; 22(23): 27942-57, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402035

RESUMO

We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.


Assuntos
Óptica e Fotônica/instrumentação , Teoria Quântica , Desenho de Equipamento , Fótons
11.
Opt Lett ; 39(4): 914-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562240

RESUMO

We demonstrate highly efficient photon-pair generation using an 8 mm long hydrogenated amorphous silicon (a-Si:H) waveguide in far-detuned multiple wavelength channels simultaneously, measuring a coincidence-to-accidental ratio as high as 400. We also characterize the contamination from Raman scattering and show it to be insignificant over a spectrum span of at least 5 THz. Our results highlight a-Si:H as a potential high-performance, CMOS-compatible platform for large-scale quantum applications, particularly those based on the use of multiplexed quantum signals.

12.
Phys Rev Lett ; 110(24): 240403, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25165898

RESUMO

We experimentally demonstrate all-optical interaction-free switching using the quantum Zeno effect, achieving a high contrast of 35:1. The experimental data match a zero-parameter theoretical model for several different regimes of operation, indicating a good understanding of the switch's characteristics. We also discuss extensions of this work that will allow for significantly improved performance, and the integration of this technology onto chip-scale devices, which can lead to ultra-low-power all-optical switching, a long-standing goal with applications to both classical and quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...