Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Biochem Biophys Res Commun ; 708: 149813, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38522403

RESUMO

The chemotherapeutic agent tegafur, a prodrug that prolongs the half-life of fluorouracil (5-FU), exerts antitumor effects against various cancers. Since tegafur is metabolized to 5-FU by CYP2A6 in the liver, the expression of CYP2A6 determines the effect of tegafur. Here, we report that the expression rhythm of Cyp2a5, a homolog of human CYP2A6, in female mice causes dosing time-dependent differences in tegafur metabolism. In the livers of female mice, CYP2A5 expression showed a circadian rhythm, peaking during the dark period. This rhythm is regulated by RORA, a core clock component, and abrogation of the CYP2A5 activity abolished the time-dependent difference in the rate of tegafur metabolism in female mice. Furthermore, administration of tegafur to mice transplanted with 4T1 breast cancer cells during the dark period suppressed increases in tumor size compared to female mice treated during the light period. Our findings reveal a novel relationship between 5-FU prodrugs and circadian clock machinery, potentially influencing antitumor effects, and contributing to the development of time-aware chemotherapy regimens for breast cancer.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Neoplasias da Mama , Feminino , Humanos , Animais , Camundongos , Tegafur/metabolismo , Neoplasias da Mama/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/metabolismo , Ritmo Circadiano
2.
J Pharmacol Exp Ther ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458768

RESUMO

A problem for patients with diabetes is the rise of complications, such as peripheral neuropathy, nephropathy and retinopathy. Among them, peripheral neuropathy, characterized by numbness and/or hypersensitivity to pain in the extremities, is likely to develop in the early stages of diabetes. Empagliflozin (EMPA), a sodium-glucose cotransporter-2 inhibitor, exerts hypoglycemic effects by preventing glucose reabsorption in proximal tubular cells. EMPA can improve cardiovascular and renal outcomes in diabetic patients, but its suppressive effect on the development of diabetic neuropathy remains unclear. In this study, we demonstrated that optimizing the dosing schedule of EMPA suppressed the development of pain hypersensitivity in streptozotocin (STZ)-induced diabetic model mice maintained under standardized light/dark cycle conditions. A single intraperitoneal administration of STZ to mice induced hyperglycemia accompanied by pain hypersensitivity. Although EMPA did not exert anti-hypersensitivity effect on STZ-induced diabetic mice after the establishment of neuropathic pain, the development of pain hypersensitivity in the diabetic mice was significantly suppressed by daily oral administration of EMPA at the beginning of the dark phase. On the other hand, the suppressive effect was not observed when EMPA was administered at the beginning of the light phase. The hypoglycemic effect of EMPA and its stimulatory effect on urinary glucose excretion were also enhanced by the administration of the drug at the beginning of the dark phase. Nocturnal mice consumed their food mainly during the dark phase. Our results support the notion that morning administration of EMPA may be effective in suppressing the development of peripheral neuropathy in diabetic patients. Significance Statement Empagliflozin, a sodium-glucose cotransporter-2 inhibitor suppressed the development of neuropathic pain hypersensitivity in streptozotocin-induced diabetic model mice in a dosing time-dependent manner.

3.
Transl Res ; 269: 31-46, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38401836

RESUMO

Chronic kidney disease (CKD) induces cardiac inflammation and fibrosis and reduces survival. We previously demonstrated that G protein-coupled receptor 68 (GPR68) promotes cardiac inflammation and fibrosis in mice with 5/6 nephrectomy (5/6Nx) and patients with CKD. However, no method of GPR68 inhibition has been found that has potential for therapeutic application. Here, we report that Cephalotaxus harringtonia var. nana extract and homoharringtonine ameliorate cardiac inflammation and fibrosis under CKD by suppressing GPR68 function. Reagents that inhibit the function of GPR68 were explored by high-throughput screening using a medicinal plant extract library (8,008 species), and we identified an extract from Cephalotaxus harringtonia var. nana as a GPR68 inhibitor that suppresses inflammatory cytokine production in a GPR68 expression-dependent manner. Consumption of the extract inhibited inflammatory cytokine expression and cardiac fibrosis and improved the decreased survival attributable to 5/6Nx. Additionally, homoharringtonine, a cephalotaxane compound characteristic of C. harringtonia, inhibited inflammatory cytokine production. Homoharringtonine administration in drinking water alleviated cardiac fibrosis and improved heart failure and survival in 5/6Nx mice. A previously unknown effect of C. harringtonia extract and homoharringtonine was revealed in which GPR68-dependent inflammation and cardiac dysfunction were suppressed. Utilizing these compounds could represent a new strategy for treating GPR68-associated diseases, including CKD.


Assuntos
Mepesuccinato de Omacetaxina , Camundongos Endogâmicos C57BL , Extratos Vegetais , Receptores Acoplados a Proteínas G , Insuficiência Renal Crônica , Animais , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/complicações , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Masculino , Mepesuccinato de Omacetaxina/farmacologia , Mepesuccinato de Omacetaxina/uso terapêutico , Camundongos , Citocinas/metabolismo , Fibrose , Humanos , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia
4.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339119

RESUMO

Prostaglandins are bioactive compounds, and the activation of their receptors affects the expression of clock genes. However, the prostaglandin F receptor (Ptgfr) has no known relationship with biological rhythms. Here, we first measured the locomotor period lengths of Ptgfr-KO (B6.129-Ptgfrtm1Sna) mice and found that they were longer under constant dark conditions (DD) than those of wild-type (C57BL/6J) mice. We then investigated the clock gene patterns within the suprachiasmatic nucleus in Ptgfr-KO mice under DD and observed a decrease in the expression of the clock gene cryptochrome 1 (Cry1), which is related to the circadian cycle. Moreover, the expression of Cry1, Cry2, and Period2 (Per2) mRNA were significantly altered in the mouse liver in Ptgfr-KO mice under DD. In the wild-type mouse, the plasma prostaglandin F2α (PGF2α) levels showed a circadian rhythm under a 12 h cycle of light-dark conditions. In addition, in vitro experiments showed that the addition of PTGFR agonists altered the amplitude of Per2::luc activity, and this alteration differed with the timing of the agonist addition. These results lead us to hypothesize that the plasma rhythm of PGF2α is important for driving clock genes, thus suggesting the involvement of PGF2α- and Ptgfr-targeting drugs in the biological clock cycle.


Assuntos
Ritmo Circadiano , Dinoprosta , Camundongos , Animais , Dinoprosta/metabolismo , Camundongos Endogâmicos C57BL , Ritmo Circadiano/genética , Relógios Biológicos , Núcleo Supraquiasmático/metabolismo , Expressão Gênica , Criptocromos/genética , Criptocromos/metabolismo
5.
PNAS Nexus ; 3(1): pgad482, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239754

RESUMO

Neuropathic pain often results from injuries and diseases that affect the somatosensory system. Disruption of the circadian clock has been implicated in the exacerbation of the neuropathic pain state. However, in this study, we report that mice deficient in a core clock component Period2 (Per2m/m mice) fail to develop tactile pain hypersensitivity even following peripheral nerve injury. Similar to male wild-type mice, partial sciatic nerve ligation (PSL)-Per2m/m male mice showed activation of glial cells in the dorsal horn of the spinal cord and increased expression of pain-related genes. Interestingly, α1D-adrenergic receptor (α1D-AR) expression was up-regulated in the spinal cord of Per2m/m mice, leading to increased production of 2-arachidonoylglycerol (2-AG), an endocannabinoid receptor ligand. This increase in 2-AG suppressed the PSL-induced tactile pain hypersensitivity. Furthermore, intraspinal dorsal horn injection of adeno-associated viral vectors expressing α1D-AR also attenuated pain hypersensitivity in PSL-wild-type male mice by increasing 2-AG production. Our findings reveal an uncovered role of the circadian clock in neuropathic pain disorders and suggest a link between α1D-AR signaling and the endocannabinoid system.

6.
J Pharmacol Exp Ther ; 388(1): 218-227, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38050132

RESUMO

Although vancomycin (VCM)-frequently used to treat drug-resistant bacterial infections-often induces acute kidney injury (AKI), discontinuation of the drug is the only effective treatment; therefore, analysis of effective avoidance methods is urgently needed. Here, we report the differences in the induction of AKI by VCM in 1/2-nephrectomized mice depending on the time of administration. Despite the lack of difference in the accumulation of VCM in the kidney between the light (ZT2) and dark (ZT14) phases, the expression of AKI markers due to VCM was observed only in the ZT2 treatment. Genomic analysis of the kidney suggested that the time of administration was involved in VCM-induced changes in monocyte and macrophage activity, and VCM had time-dependent effects on renal macrophage abundance, ATP activity, and interleukin (IL)-1ß expression. Furthermore, the depletion of macrophages with clodronate abolished the induction of IL-1ß and AKI marker expression by VCM administration at ZT2. This study provides evidence of the need for time-dependent pharmacodynamic considerations in the prevention of VCM-induced AKI as well as the potential for macrophage-targeted AKI therapy. SIGNIFICANCE STATEMENT: There is a time of administration at which vancomycin (VCM)-induced renal injury is more and less likely to occur, and macrophages are involved in this difference. Therefore, there is a need for time-dependent pharmacodynamic considerations in the prevention of VCM-induced acute kidney injury as well as the potential for macrophage-targeted acute kidney injury therapy.


Assuntos
Injúria Renal Aguda , Vancomicina , Camundongos , Animais , Vancomicina/farmacologia , Vancomicina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Rim , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Macrófagos
7.
J Control Release ; 364: 490-507, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918485

RESUMO

Mammalians' circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN). SCN control biological rhythms such as the sleep-wake rhythm and homeostatic functions of steroid hormones and their receptors. Alterations in these biological rhythms are implicated in the outcomes of pathogenic conditions such as depression, diabetes, and cancer. Chronotherapy is about optimizing treatment to combat risks and intensity of the disease symptoms that vary depending on the time of day. Thus, conditions/diseases such as allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease, prone to manifest severe symptoms depending on the time of day, would be benefited from chronotherapy. Monitoring rhythm, overcoming rhythm disruption, and manipulating the rhythms from the viewpoints of underlying molecular clocks are essential to enhanced chronopharmacotherapy. New drugs focused on molecular clocks are being developed to improve therapeutics. In this review, we provide a critical summary of literature reports concerning (a) the rationale/mechanisms for time-dependent dosing differences in therapeutic outcomes and safety of antitumor drugs, (b) the molecular pathways underlying biological rhythms, and (c) the possibility of pharmacotherapy based on the intra- and inter-individual variabilities from the viewpoints of the clock genes.


Assuntos
Antineoplásicos , Ritmo Circadiano , Animais , Ritmo Circadiano/genética , Relógios Biológicos/genética , Cronoterapia , Antineoplásicos/farmacologia , Homeostase , Mamíferos
8.
Biochem Biophys Res Commun ; 675: 92-98, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463524

RESUMO

Chronic kidney disease (CKD) induces an imbalance in the intestinal microbiota, affecting various physiological functions and leading to cardiovascular inflammation and fibrosis. However, the cardiotoxic impact of intestinal microbiota-derived uremic substances in advanced renal dysfunction remains unexplored. Therefore, we developed a 5/6 nephrectomy (5/6Nx) mouse model to investigate the intestinal microbiota and the effects of administering vancomycin (VCM) on the microbiota and the cardiac pathology associated with CKD. Despite VCM administration after the development of irreversible glomerulosclerosis and tubulointerstitial fibrosis, blood indoxyl sulfate and phenyl sulfate levels, which are intestinal bacteria-derived uremic substances, brain natriuretic peptide levels, and the fibrotic area in the heart were decreased. Moreover, VCM administration prevented 5/6Nx-induced weight loss and prolonged survival time. Our findings suggest that VCM-induced changes in the intestinal microbiota composition ameliorate heart failure and improve survival rates by reducing intestinal microbiota-derived cardiotoxic substances despite advanced renal dysfunction. This highlights the potential of using the intestinal microbiota as a target to prevent and treat cardiovascular conditions associated with CKD.


Assuntos
Insuficiência Cardíaca , Insuficiência Renal Crônica , Camundongos , Animais , Vancomicina/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Fibrose , Administração Oral
9.
Biochem Pharmacol ; 215: 115708, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506923

RESUMO

Proteins localize to their respective organelles in cells. This localization is changed by activation or repression in response to signal transduction. Therefore, the appropriate intracellular localization of proteins is important for their functions to be exerted. However, difficulties are associated with controlling the localization of endogenous proteins. In the present study, we developed a conceptually new method of controlling the intracellular localization of endogenous proteins using bispecific nanobodies (BiNbs). BiNbs recognize proteins expressed in the inner membrane, cytoskeleton, nucleus, and peroxisomes, but not in mitochondria or endoplasmic reticulum. BiNbs designed to recognize ß-CATENIN and the intrinsic cytosolic protein VIMENTIN (3 × Flag ß-CAT-VIM BiNbs) decreased the ß-CATENIN-mediated transactivation of target genes by preventing its nuclear localization. Furthermore, 3 × Flag ß-CAT-VIM BiNbs suppressed the proliferation and invasion of the VIMENTIN-expressing breast cancer cell line MDA-MB-231, but not MDA-MB-468, in which the expression of VIMENTIN was defective. The present results revealed that changes in the intracellular localization of specific proteins by BiNbs modulated the physiology and functions of cells. The development of BiNbs to recognize proteins specifically expressed in target cells may be a useful approach for eliciting cell-selective effects.


Assuntos
Anticorpos de Domínio Único , beta Catenina , beta Catenina/metabolismo , Vimentina/genética , Anticorpos de Domínio Único/metabolismo , Retículo Endoplasmático/metabolismo , Fenômenos Fisiológicos Celulares , Linhagem Celular Tumoral
10.
Mol Pharmacol ; 104(2): 73-79, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316349

RESUMO

Neuropathic pain associated with cancers is caused by tumor growth compressing and damaging nerves, which would also be enhanced by inflammatory factors through sensitizing nociceptor neurons. A troublesome hallmark symptom of neuropathic pain is hypersensitivity to innocuous stimuli, a condition known as "tactile allodynia", which is often refractory to NSAIDs and opioids. The involvement of chemokine CCL2 (monocyte chemoattractant protein-1) in cancer-evoked neuropathic pain is well established, but opinions remain divided as to whether CCL2 is involved in the production of tactile allodynia with tumor growth. In this study, we constructed Ccl2 knockout NCTC 2472 (Ccl2-KO NCTC) fibrosarcoma cells and conducted pain behavioral test using Ccl2-KO NCTC-implanted mice. Implantation of naïve NCTC cells around the sciatic nerves of mice produced tactile allodynia in the inoculated paw. Although the growth of Ccl2 KO NCTC-formed tumors was comparable to that of naïve NCTC-formed tumors, Ccl2-KO NCTC-bearing mice failed to show tactile pain hypersensitivity, suggesting the involvement of CCL2 in cancer-induced allodynia. Subcutaneous administration of controlled-release nanoparticles containing the CCL2 expression inhibitor NS-3-008 (1-benzyl-3-hexylguanidine) significantly attenuated tactile allodynia in naïve NCTC-bearing mice accompanied by a reduction of CCL2 content in tumor masses. Our present findings suggest that inhibition of CCL2 expression in cancer cells is a useful strategy to attenuate tactile allodynia induced by tumor growth. Development of a controlled-release system of CCL2 expression inhibitor may be a preventative option for the treatment of cancer-evoked neuropathic pain. SIGNIFICANCE STATEMENT: The blockade of chemokine/receptor signaling, particularly for C-C motif chemokine ligand 2 (CCL2) and its high-affinity receptor C-C chemokine receptor type 2 (CCR2), has been implicated to attenuate cancer-induced inflammatory and nociceptive pain. This study demonstrated that continuous inhibition of CCL2 production from cancer cells also prevents the development of tactile allodynia associated with tumor growth. Development of a controlled-release system of CCL2 expression inhibitor may be a preventative option for management of cancer-evoked tactile allodynia.


Assuntos
Fibrossarcoma , Neuralgia , Animais , Camundongos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/uso terapêutico , Preparações de Ação Retardada , Fibrossarcoma/complicações , Fibrossarcoma/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Ligantes , Neuralgia/tratamento farmacológico
11.
J Biochem ; 174(2): 193-201, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37159505

RESUMO

Diurnal oscillations in the expression of several types of cell surface transporters have been demonstrated in the intestinal epithelial cells, which are mainly generated at transcriptional or degradation processes. Concentrative nucleoside transporter-2 (CNT2) is expressed at the apical site of intestinal epithelial cells and contributes to the uptake of nucleosides and their analogs from the intestinal lumen into the epithelial cells. In this study, we demonstrated that the localization of CNT2 protein in the plasma membrane of mouse intestinal epithelial cells exhibited a diurnal oscillation without changing its protein level in the whole cell. The scaffold protein PDZK1 interacted with CNT2 and stabilized its plasmalemmal localization. The expression of PDZK1 was under the control of molecular components of the circadian clock. Temporal accumulation of PDZK1 protein in intestinal epithelial cells enhanced the plasmalemmal localization of CNT2 at certain times of the day. The temporal increase in CNT2 protein levels at the plasma membrane also facilitated the uptake of adenosine into the intestinal epithelial cells. These results suggest a novel molecular mechanism for the diurnal localization of cell surface transporters and extend our understanding of the biological clock system that generates apparent physiological rhythms.


Assuntos
Proteínas de Transporte , Nucleosídeos , Animais , Camundongos , Transporte Biológico , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo
12.
Biochem Biophys Res Commun ; 658: 88-96, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37027909

RESUMO

Renewal of retinal photoreceptor outer segments is conducted through daily shedding of distal photoreceptor outer segment tips and subsequent their phagocytosis by the adjacent retinal pigment epithelium (RPE) monolayer. Dysregulation of the diurnal clearance of photoreceptor outer segment tips has been implicated in age-related retinal degeneration, but it remains to be clarified how the circadian phagocytic activity of RPE cells is modulated by senescence. In this study, we used the human RPE cell line ARPE-19 to investigate whether hydrogen peroxide (H2O2)-induced senescence in ARPE-19 cells alters the circadian rhythm of their phagocytic activity. After synchronization of the cellular circadian clock by dexamethasone treatment, the phagocytic activity of normal ARPE-19 cells exhibited significant 24-h oscillation, but this oscillation was modulated by senescence. The phagocytic activity of senescent ARPE-19 cells increased constantly throughout the 24-h period, which still exhibited blunted circadian oscillation, accompanied by an alteration in the rhythmic expression of circadian clock genes and clock-controlled phagocytosis-related genes. The expression levels of REV-ERBα, a molecular component of the circadian clock, were constitutively increased in senescent ARPE-19 cells. Furthermore, pharmacological activation of REV-ERBα by its agonist SR9009 enhanced the phagocytic activity of normal ARPE-19 cells and increased the expression of clock-controlled phagocytosis-related genes. Our present findings extend to understand the role of circadian clock in the alteration of phagocytic activity in RPE during aging. Constitutive enhancement of phagocytic activity of senescent RPE may contribute to age-related retinal degeneration.


Assuntos
Senescência Celular , Ritmo Circadiano , Fagocitose , Epitélio Pigmentado da Retina , Humanos , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Proteínas CLOCK/genética , Dexametasona/farmacologia , Peróxido de Hidrogênio/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Fatores de Tempo
13.
J Am Chem Soc ; 145(14): 8248-8260, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37011039

RESUMO

Detection of metabolic activity enables us to reveal the inherent metabolic state of cells and elucidate mechanisms underlying cellular homeostasis and growth. However, a fluorescence approach for the study of metabolic pathways is still largely unexplored. Herein, we have developed a new chemical probe for the fluorescence-based detection of fatty acid ß-oxidation (FAO), a key process in lipid catabolism, in cells and tissues. This probe serves as a substrate of FAO and forms a reactive quinone methide (QM) as a result of metabolic reactions. The liberated QM is covalently captured by intracellular proteins, and subsequent bio-orthogonal ligation with a fluorophore enables fluorescence analysis. This reaction-based sensing allowed us to detect FAO activity in cells at a desired emission wavelength using diverse analytical techniques including fluorescence imaging, in-gel fluorescence activity-based protein profiling (ABPP), and fluorescence-activated cell sorting (FACS). The probe was able to detect changes in FAO activity induced by chemical modulators in cultured cells. The probe was further employed for fluorescence imaging of FAO in mouse liver tissues and revealed the metabolic heterogeneity of FAO activity in hepatocytes by the combination of FACS and gene expression analysis, highlighting the utility of our probe as a chemical tool for fatty acid metabolism research.


Assuntos
Ácidos Graxos , Hepatócitos , Camundongos , Animais , Oxirredução , Fluorescência , Hepatócitos/metabolismo , Ácidos Graxos/metabolismo
14.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012136

RESUMO

(1) Background: Oxaliplatin is used as first-line chemotherapy not only for colorectal cancer but also for gastric and pancreatic cancers. However, it induces peripheral neuropathy with high frequency as an adverse event, and there is no effective preventive or therapeutic method. (2) Methods: The effects of omeprazole, a proton pump inhibitor (PPI), on oxaliplatin-induced peripheral neuropathy (OIPN) was investigated using an in vivo model and a real-world database. (3) Results: In a rat model, oxaliplatin (4 mg/kg, i.p., twice a week for 4 weeks) caused mechanical hypersensitivity accompanied by sciatic nerve axonal degeneration and myelin sheath disorder. Repeated injection of omeprazole (5−20 mg/kg, i.p., five times per week for 4 weeks) ameliorated these behavioral and pathological abnormalities. Moreover, omeprazole did not affect the tumor growth inhibition of oxaliplatin in tumor bearing mice. Furthermore, clinical database analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) suggests that the group using omeprazole has a lower reporting rate of peripheral neuropathy of oxaliplatin-treated patients than the group not using (3.06% vs. 6.48%, p < 0.001, reporting odds ratio 0.44, 95% confidence interval 0.32−0.61). (4) Conclusions: These results show the preventing effect of omeprazole on OIPN.


Assuntos
Antineoplásicos , Neoplasias , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos/efeitos adversos , Camundongos , Neoplasias/tratamento farmacológico , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Oxaliplatina/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Ratos , Roedores
15.
Allergol Int ; 71(4): 437-447, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35850747

RESUMO

Clock genes, circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN), control various circadian rhythms in many biological processes such as physiology and behavior. Clock gene regulates many diseases such as cancer, immunological dysfunction, metabolic syndrome and sleep disorders etc. Chronotherapy is especially relevant, when the risk and/or intensity of the symptoms of disease vary predicably over time as exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease. Dosing time influences the effectiveness and toxicity of many drugs. The pharmacodynamics of medications as well as pharmacokinetics influences chronopharmacological phenomena. To escape from host immunity in the tumor microenvironment, cancer cells have acquired several pathways. Immune checkpoint therapy targeting programmed death 1 (PD-1) and its ligand (PD-L1) interaction had been approved for the treatment of patients with several types of cancers. Circadian expression of PD-1 is identified on tumor associated macrophages (TAMs), which is rationale for selecting the most appropriate time of day for administration of PD-1/PD-L1 inhibitors. The therapies for chronic kidney disease (CKD) are urgently needed because of a global health problem. The mechanism of the cardiac complications in mice with CKD had been related the GRP68 in circulating monocytes and serum accumulation of retinol. Development of a strategy to suppress retinol accumulation will be useful to prevent the cardiac complications of CKD. Therefore, we introduce an overview of the dosing time-dependent changes in therapeutic outcome and safety of drug for immune-related diseases.


Assuntos
Antígeno B7-H1 , Insuficiência Renal Crônica , Animais , Inibidores de Checkpoint Imunológico , Ligantes , Camundongos , Preparações Farmacêuticas/metabolismo , Receptor de Morte Celular Programada 1 , Vitamina A
16.
J Biol Chem ; 298(8): 102184, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753353

RESUMO

Multidrug resistance-associated protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is highly expressed in the kidneys of mammals and is responsible for renal elimination of numerous drugs. Adenosine deaminase acting on RNA 1 (ADAR1) has been reported to regulate gene expression by catalyzing adenosine-to-inosine RNA editing reactions; however, potential roles of ADAR1 in the regulation of MRP4 expression have not been investigated. In this study, we found that downregulation of ADAR1 increased the expression of MRP4 in human renal cells at the posttranscriptional level. Luciferase reporter assays and microarray analysis revealed that downregulation of ADAR1 reduced the levels of microRNA miR-381-3p, which led to the corresponding upregulation of MPR4 expression. Circular RNAs (circRNAs) are a type of closed-loop endogenous noncoding RNAs that play an essential role in gene expression by acting as miRNA sponges. We demonstrate that ADAR1 repressed the biogenesis of circRNA circHIPK3 through its adenosine-to-inosine RNA editing activity, which altered the secondary structure of the precursor of circHIPK3. Furthermore, in silico analysis suggested that circHIPK3 acts as a sponge of miR-381-3p. Indeed, we found overexpression of circHIPK3 induced the expression of MRP4 through its interference with miR-381-3p. Taken together, our study provides novel insights into regulation of the expression of xenobiotic transporters through circRNA expression by the RNA editing enzyme ADAR1.


Assuntos
Adenosina Desaminase/metabolismo , MicroRNAs , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/genética , Resistência a Múltiplos Medicamentos , Humanos , Inosina/genética , Rim/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , RNA Circular/genética , Proteínas de Ligação a RNA/genética
17.
Mol Cancer Res ; 20(6): 972-982, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190830

RESUMO

Cancer cells have acquired several pathways to escape from host immunity in the tumor microenvironment. Programmed death 1 (PD-1) receptor and its ligand PD-L1 are involved in the key pathway of tumor immune escape, and immune checkpoint therapy targeting PD-1 and PD-L1 has been approved for the treatment of patients with certain types of malignancies. Although PD-1 is a well-characterized receptor on T cells, the immune checkpoint receptor is also expressed on tumor-associated macrophages (TAM), a major immune component of the tumor microenvironment. In this study, we found significant diurnal oscillation in the number of PD-1-expressing TAMs collected from B16/BL6 melanoma-bearing mice. The levels of Pdcd1 mRNA, encoding PD-1, in TAMs also fluctuated in a diurnal manner. Luciferase reporter and bioluminescence imaging analyses revealed that a NF-κB response element in the upstream region of the Pdcd1 gene is responsible for its diurnal expression. A circadian regulatory component, DEC2, whose expression in TAMs exhibited diurnal oscillation, periodically suppressed NF-κB-induced transactivation of the Pdcd1 gene, resulting in diurnal expression of PD-1 in TAMs. Furthermore, the antitumor efficacy of BMS-1, a small molecule inhibitor of PD-1/PD-L1, was enhanced by administering it at the time of day when PD-1 expression increased on TAMs. These findings suggest that identification of the diurnal expression of PD-1 on TAMs is useful for selecting the most appropriate time of day to administer PD-1/PD-L1 inhibitors. IMPLICATIONS: Selecting the most appropriate dosing time of PD-1/PD-L1 inhibitors may aid in developing cancer immunotherapy with higher efficacy.


Assuntos
Melanoma Experimental , Macrófagos Associados a Tumor , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Camundongos , NF-kappa B , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
18.
J Biochem ; 171(5): 487-492, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34967399

RESUMO

In addition to diurnal rhythms in physiology and behavior, a variety of pathological conditions also exhibit marked day-night changes in symptom intensity, exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke and chronic pain disorders. Currently, novel therapeutic approaches are facilitated by the development of chemical compounds targeted to key proteins that cause diurnal exacerbation of pathological events. Neuropathic pain is a chronic condition that occurs by tumor-induced nerve compression, cancer cell infiltration into the nerve, diabetes and herpes virus infection. One troublesome hallmark symptom of neuropathic pain is hypersensitivity to normally innocuous stimuli known as 'mechanical allodynia' that is often refractory to common analgesic therapies. Millions of patients worldwide presently endure neuropathic pain. We summarize the recent insights gained into the mechanism of diurnal exacerbation of neuropathic pain hypersensitivity and introduce the strategy of circadian clock-based drug development.


Assuntos
Neuralgia , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Humanos , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico
19.
Biol Pharm Bull ; 44(11): 1577-1584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719634

RESUMO

Daily rhythmic variations in biological functions affect the efficacy and/or toxicity of drugs: a large number of drugs cannot be expected to exhibit the same potency at different administration times. The "circadian clock" is an endogenous timing system that broadly regulates metabolism, physiology and behavior. In mammals, this clock governs the oscillatory expression of the majority of genes with a period length of approximately 24 h. Genetic studies have revealed that molecular components of the circadian clock regulate the expression of genes responsible for the sensitivity to drugs and their disposition. The circadian control of pharmacodynamics and pharmacokinetics enables 'chrono-pharmaceutical' applications, namely drug administration at appropriate times of day to optimize the therapeutic index (efficacy vs. toxicity). On the other hand, a variety of pathological conditions also exhibit marked day-night changes in symptom intensity. Currently, novel therapeutic approaches are facilitated by the development of chemical compound targeted to key proteins that cause circadian exacerbation of disease events. This review presents an overview of the current understanding of the role of the circadian biological clock in regulating drug efficacy and disease conditions, and also describes the importance of identifying the difference in the circadian machinery between diurnal and nocturnal animals to select the most appropriate times of day to administer drugs in humans.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Animais , Ritmo Circadiano/efeitos dos fármacos , Humanos , Farmacocinética , Farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...