Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355784

RESUMO

Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer's disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.

2.
Viruses ; 15(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140525

RESUMO

Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.


Assuntos
Alphaherpesvirinae , Latência Viral , Humanos , Axônios , Replicação Viral , Proteínas Virais
3.
Pathogens ; 12(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764950

RESUMO

Alpha herpesviruses (α-HV) infect host mucosal epithelial cells prior to establishing a life-long latent infection in the peripheral nervous system. The initial spread of viral particles from mucosa to the nervous system and the role of intrinsic immune responses at this barrier is not well understood. Using primary neurons cultured in compartmentalized chambers, prior studies performed on Pseudorabies virus (PRV) have demonstrated that type I and type II interferons (IFNs) induce a local antiviral response in axons via distinct mechanisms leading to a reduction in viral particle transport to the neuronal nucleus. A new class of interferons known as type III IFNs has been shown to play an immediate role against viral infection in mucosal epithelial cells. However, the antiviral effects of type III IFNs within neurons during α-HV infection are largely unknown. In this study, we focused on elucidating the antiviral activity of type III IFN against PRV neuronal infection, and we compared the interferon-stimulated gene (ISGs) induction pattern in neurons to non-neuronal cells. We found that IFN pre-exposure of both primary neurons and fibroblast cells significantly reduces PRV virus yield, albeit by differential STAT activation and ISG induction patterns. Notably, we observed that type III IFNs trigger the expression of a subset of ISGs mainly through STAT1 activation to induce an antiviral state in primary peripheral neurons.

4.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214906

RESUMO

Infections with defined Herpesviruses, such as Pseudorabies virus (PRV) and Varicella zoster virus (VZV) can cause neuropathic itch, referred to as "mad itch" in multiple species. The underlying mechanisms involved in neuropathic "mad itch" are poorly understood. Here, we show that PRV infections hijack the RNA helicase DDX3X in sensory neurons to facilitate anterograde transport of the virus along axons. PRV induces re-localization of DDX3X from the cell body to the axons which ultimately leads to death of the infected sensory neurons. Inducible genetic ablation of Ddx3x in sensory neurons results in neuronal death and "mad itch" in mice. This neuropathic "mad itch" is propagated through activation of the opioid system making the animals "addicted to itch". Moreover, we show that PRV co-opts and diverts T cell development in the thymus via a sensory neuron-IL-6-hypothalamus-corticosterone stress pathway. Our data reveal how PRV, through regulation of DDX3X in sensory neurons, travels along axons and triggers neuropathic itch and immune deviations to initiate pathophysiological programs which facilitate its spread to enhance infectivity.

5.
J Virol ; 96(5): e0175221, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34985995

RESUMO

Infection of peripheral axons by alpha herpesviruses (AHVs) is a critical stage in establishing a lifelong infection in the host. Upon entering the cytoplasm of axons, AHV nucleocapsids and associated inner-tegument proteins must engage the cellular retrograde transport machinery to promote the long-distance movement of virion components to the nucleus. The current model outlining this process is incomplete, and further investigation is required to discover all viral and cellular determinants involved as well as the temporality of the events. Using a modified trichamber system, we have discovered a novel role of the pseudorabies virus (PRV) serine/threonine kinase US3 in promoting efficient retrograde transport of nucleocapsids. We discovered that transporting nucleocapsids move at similar velocities in both the presence and absence of a functional US3 kinase; however, fewer nucleocapsids are moving when US3 is absent, and they move for shorter periods of time before stopping, suggesting that US3 is required for efficient nucleocapsid engagement with the retrograde transport machinery. This led to fewer nucleocapsids reaching the cell bodies to produce a productive infection 12 h later. Furthermore, US3 was responsible for the induction of local translation in axons as early as 1 h postinfection (hpi) through the stimulation of a phosphatidylinositol 3-kinase (PI3K)/Akt-mToRC1 pathway. These data describe a novel role for US3 in the induction of local translation in axons during AHV infection, a critical step in transport of nucleocapsids to the cell body. IMPORTANCE Neurons are highly polarized cells with axons that can reach centimeters in length. Communication between axons at the periphery and the distant cell body is a relatively slow process involving the active transport of chemical messengers. There is a need for axons to respond rapidly to extracellular stimuli. Translation of repressed mRNAs present within the axon occurs to enable rapid, localized responses independently of the cell body. AHVs have evolved a way to hijack local translation in the axons to promote their transport to the nucleus. We have determined the cellular mechanism and viral components involved in the induction of axonal translation. The US3 serine/threonine kinase of PRV activates Akt-mToRC1 signaling pathways early during infection to promote axonal translation. When US3 is not present, the number of moving nucleocapsids and their processivity are reduced, suggesting that US3 activity is required for efficient engagement of nucleocapsids with the retrograde transport machinery.


Assuntos
Axônios , Herpesvirus Suídeo 1 , Proteínas Serina-Treonina Quinases , Animais , Herpesvirus Suídeo 1/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleocapsídeo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
PLoS One ; 16(2): e0244334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33544724

RESUMO

Wild elephant populations are declining rapidly due to rampant killing for ivory and body parts, range fragmentation, and human-elephant conflict. Wild and captive elephants are further impacted by viruses, including highly pathogenic elephant endotheliotropic herpesviruses. Moreover, while the rich genetic diversity of the ancient elephant lineage is disappearing, elephants, with their low incidence of cancer, have emerged as a surprising resource in human cancer research for understanding the intrinsic cellular response to DNA damage. However, studies on cellular resistance to transformation and herpesvirus reproduction have been severely limited, in part due to the lack of established elephant cell lines to enable in vitro experiments. This report describes creation of a recombinant plasmid, pAelPyV-1-Tag, derived from a wild isolate of African Elephant Polyomavirus (AelPyV-1), that can be used to create immortalized lines of elephant cells. This isolate was extracted from a trunk nodule biopsy isolated from a wild African elephant, Loxodonta africana, in Botswana. The AelPyV-1 genome contains open-reading frames encoding the canonical large (LTag) and small (STag) tumor antigens. We cloned the entire early region spanning the LTag and overlapping STag genes from this isolate into a high-copy vector to construct a recombinant plasmid, pAelPyV-1-Tag, which effectively transformed primary elephant endothelial cells. We expect that the potential of this reagent to transform elephant primary cells will, at a minimum, facilitate study of elephant-specific herpesviruses.


Assuntos
Antígenos Virais de Tumores/genética , Genoma Viral , Infecções por Polyomavirus/veterinária , Polyomavirus/isolamento & purificação , Infecções Tumorais por Vírus/veterinária , Animais , Animais Selvagens , Elefantes , Células Endoteliais/virologia , Infecções por Polyomavirus/diagnóstico , Infecções Tumorais por Vírus/diagnóstico
7.
Curr Issues Mol Biol ; 41: 1-62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32723924

RESUMO

In vertebrates, the nervous system (NS) is composed of a peripheral collection of neurons (the peripheral nervous system, PNS), a central set found in the brain and spinal cord (the central nervous system, CNS). The NS is protected by rather complicated multi-layer barriers that allow access to nutrients and facilitate contact with the peripheral tissues, but block entry of pathogens and toxins. Virus infections usually begin in peripheral tissues and if these barriers are weakened, they can spread into the PNS and more rarely into the CNS. Most viral infections of the NS are opportunistic or accidental pathogens that gain access via the bloodstream (e.g., HIV and various arboviruses). But a few have evolved to enter the NS efficiently by invading neurons directly and by exploiting neuronal cell biology (e.g., rhabdoviruses and alphaherpesviruses). Most NS infections are devastating and difficult to manage. Remarkably, the alphaherpesviruses establish life-long quiescent infections in the PNS, with rare but often serious CNS pathology. In this review, we will focus on how alphaherpesviruses gain access to and spread in the NS, with particular emphasis on bidirectional transport and spread within and between neurons and neural circuits, which is regulated by complex viral-host protein interactions. Finally, we will describe the wide use of alphaherpesviruses as tools to study nerve connectivity and function in animal models.


Assuntos
Alphaherpesvirinae/patogenicidade , Sistema Nervoso Central/virologia , Infecções por Herpesviridae/virologia , Neurônios/virologia , Sistema Nervoso Periférico/virologia , Animais , Humanos
8.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361431

RESUMO

Latent and recurrent productive infection of long-living cells, such as neurons, enables alphaherpesviruses to persist in their host populations. Still, the viral factors involved in these events remain largely obscure. Using a complementation assay in compartmented primary peripheral nervous system (PNS) neuronal cultures, we previously reported that productive replication of axonally delivered genomes is facilitated by pseudorabies virus (PRV) tegument proteins. Here, we sought to unravel the role of tegument protein UL13 in this escape from silencing. We first constructed four new PRV mutants in the virulent Becker strain using CRISPR/Cas9-mediated gene replacement: (i) PRV Becker defective for UL13 expression (PRV ΔUL13), (ii) PRV where UL13 is fused to eGFP (PRV UL13-eGFP), and two control viruses (iii and iv) PRV where VP16 is fused with mTurquoise at either the N terminus (PRV mTurq-VP16) or the C terminus (PRV VP16-mTurq). Live-cell imaging of PRV capsids showed efficient retrograde transport after axonal infection with PRV UL13-eGFP, although we did not detect dual-color particles. However, immunofluorescence staining of particles in mid-axons indicated that UL13 might be cotransported with PRV capsids in PNS axons. Superinfecting nerve cell bodies with UV-inactivated PRV ΔUL13 failed to efficiently promote escape from genome silencing compared to UV-PRV wild type and UV-PRV UL13-eGFP superinfection. However, UL13 does not act directly in the escape from genome silencing, as adeno-associated virus (AAV)-mediated UL13 expression in neuronal cell bodies was not sufficient to provoke escape from genome silencing. Based on this, we suggest that UL13 may contribute to initiation of productive infection through phosphorylation of other tegument proteins.IMPORTANCE Alphaherpesviruses have mastered various strategies to persist in an immunocompetent host, including the induction of latency and reactivation in peripheral nervous system (PNS) ganglia. We recently discovered that the molecular mechanism underlying escape from latency by the alphaherpesvirus pseudorabies virus (PRV) relies on a structural viral tegument protein. This study aimed at unravelling the role of tegument protein UL13 in PRV escape from latency. First, we confirmed the use of CRISPR/Cas9-mediated gene replacement as a versatile tool to modify the PRV genome. Next, we used our new set of viral mutants and AAV vectors to conclude the indirect role of UL13 in PRV escape from latency in primary neurons, along with its spatial localization during retrograde capsid transport in axons. Based on these findings, we speculate that UL13 phosphorylates one or more tegument proteins, thereby priming these putative proteins to induce escape from genome silencing.


Assuntos
Inativação Gênica , Genoma Viral/genética , Herpesvirus Suídeo 1/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Alphaherpesvirinae/fisiologia , Animais , Transporte Axonal , Sistemas CRISPR-Cas , Capsídeo/metabolismo , Células Cultivadas , Mutação , Neurônios/metabolismo , Neurônios/virologia , Proteínas Serina-Treonina Quinases/genética , Suínos , Proteínas Virais/genética , Latência Viral
9.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32075931

RESUMO

Alphaherpesviruses, including pseudorabies virus (PRV), are neuroinvasive pathogens that establish lifelong latency in peripheral ganglia following the initial infection at mucosal surfaces. The establishment of latent infection and subsequent reactivations, during which newly assembled virions are sorted into and transported anterogradely inside axons to the initial mucosal site of infection, rely on axonal bidirectional transport mediated by microtubule-based motors. Previous studies using cultured peripheral nervous system (PNS) neurons have demonstrated that KIF1A, a kinesin-3 motor, mediates the efficient axonal sorting and transport of newly assembled PRV virions. Here we report that KIF1A, unlike other axonal kinesins, is an intrinsically unstable protein prone to proteasomal degradation. Interestingly, PRV infection of neuronal cells leads not only to a nonspecific depletion of KIF1A mRNA but also to an accelerated proteasomal degradation of KIF1A proteins, leading to a near depletion of KIF1A protein late in infection. Using a series of PRV mutants deficient in axonal sorting and anterograde spread, we identified the PRV US9/gE/gI protein complex as a viral factor facilitating the proteasomal degradation of KIF1A proteins. Moreover, by using compartmented neuronal cultures that fluidically and physically separate axons from cell bodies, we found that the proteasomal degradation of KIF1A occurs in axons during infection. We propose that the PRV anterograde sorting complex, gE/gI/US9, recruits KIF1A to viral transport vesicles for axonal sorting and transport and eventually accelerates the proteasomal degradation of KIF1A in axons.IMPORTANCE Pseudorabies virus (PRV) is an alphaherpesvirus related to human pathogens herpes simplex viruses 1 and 2 and varicella-zoster virus. Alphaherpesviruses are neuroinvasive pathogens that establish lifelong latent infections in the host peripheral nervous system (PNS). Following reactivation from latency, infection spreads from the PNS back via axons to the peripheral mucosal tissues, a process mediated by kinesin motors. Here, we unveil and characterize the underlying mechanisms for a PRV-induced, accelerated degradation of KIF1A, a kinesin-3 motor promoting the sorting and transport of PRV virions in axons. We show that PRV infection disrupts the synthesis of KIF1A and simultaneously promotes the degradation of intrinsically unstable KIF1A proteins by proteasomes in axons. Our work implies that the timing of motor reduction after reactivation would be critical because progeny particles would have a limited time window for sorting into and transport in axons for further host-to-host spread.


Assuntos
Herpesvirus Suídeo 1/metabolismo , Cinesinas/metabolismo , Pseudorraiva/metabolismo , Animais , Transporte Axonal/fisiologia , Axônios/virologia , Linhagem Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/fisiologia , Masculino , Microtúbulos/metabolismo , Neurônios/virologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Proteínas do Envelope Viral/genética , Vírion/metabolismo
10.
PLoS Pathog ; 14(7): e1007188, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30028873

RESUMO

Neuroinvasive viruses, such as alpha herpesviruses (αHV) and rabies virus (RABV), initially infect peripheral tissues, followed by invasion of the innervating axon termini. Virus particles must undergo long distance retrograde axonal transport to reach the neuron cell bodies in the peripheral or central nervous system (PNS/CNS). How virus particles hijack the axonal transport machinery and how PNS axons respond to and regulate infection are questions of significant interest. To track individual virus particles, we constructed a recombinant RABV expressing a P-mCherry fusion protein, derived from the virulent CVS-N2c strain. We studied retrograde RABV transport in the presence or absence of interferons (IFN) or protein synthesis inhibitors, both of which were reported previously to restrict axonal transport of αHV particles. Using neurons from rodent superior cervical ganglia grown in tri-chambers, we showed that axonal exposure to type I or type II IFN did not alter retrograde axonal transport of RABV. However, exposure of axons to emetine, a translation elongation inhibitor, blocked axonal RABV transport by a mechanism that was not dependent on protein synthesis inhibition. The minority of RABV particles that still moved retrograde in axons in the presence of emetine, moved with slower velocities and traveled shorter distances. Emetine's effect was specific to RABV, as transport of cellular vesicles was unchanged. These findings extend our understanding of how neuroinvasion is regulated in axons and point toward a role for emetine as an inhibitory modulator of RABV axonal transport.


Assuntos
Transporte Axonal , Axônios/virologia , Vírus da Raiva/patogenicidade , Raiva/virologia , Animais , Transporte Axonal/efeitos dos fármacos , Emetina/farmacologia , Interferons/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Vírus da Raiva/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Future Virol ; 13(6): 431-443, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29967651

RESUMO

Alpha herpesviruses are common pathogens of mammals. They establish a productive infection in many cell types, but a life-long latent infection occurs in PNS neurons. A vast majority of the human population has latent HSV-1 infections. Currently, there is no cure to clear latent infections. Even though HSV-1 is among the best studied viral pathogens, regulation of latency and reactivation is not well understood due to several challenges including a lack of animal models that precisely recapitulate latency/reactivation episodes; a difficulty in modeling in vitro latency; and a limited understanding of neuronal biology. In this review, we discuss insights gained from in vitro latency models with a focus on the neuronal and viral factors that determine the mode of infection.

12.
PLoS Pathog ; 13(10): e1006608, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29073268

RESUMO

Alpha herpesvirus genomes encode the capacity to establish quiescent infections (i.e. latency) in the peripheral nervous system for the life of their hosts. Multiple times during latency, viral genomes can reactivate to start a productive infection, enabling spread of progeny virions to other hosts. Replication of alpha herpesviruses is well studied in cultured cells and many aspects of productive replication have been identified. However, many questions remain concerning how a productive or a quiescent infection is established. While infections in vivo often result in latency, infections of dissociated neuronal cultures in vitro result in a productive infection unless lytic viral replication is suppressed by DNA polymerase inhibitors or interferon. Using primary peripheral nervous system neurons cultured in modified Campenot tri-chambers, we previously reported that reactivateable, quiescent infections by pseudorabies virus (PRV) can be established in the absence of any inhibitor. Such infections were established in cell bodies only when physically isolated axons were infected at a very low multiplicity of infection (MOI). In this report, we developed a complementation assay in compartmented neuronal cultures to investigate host and viral factors in cell bodies that prevent establishment of quiescent infection and promote productive replication of axonally delivered genomes (i.e. escape from silencing). Stimulating protein kinase A (PKA) signaling pathways in isolated cell bodies, or superinfecting cell bodies with either UV-inactivated PRV or viral light particles (LP) promoted escape from genome silencing and prevented establishment of quiescent infection but with different molecular mechanisms. Activation of PKA in cell bodies triggers a slow escape from silencing in a cJun N-terminal kinase (JNK) dependent manner. However, escape from silencing is induced rapidly by infection with UVPRV or LP in a PKA- and JNK-independent manner. We suggest that viral tegument proteins delivered to cell bodies engage multiple signaling pathways that block silencing of viral genomes delivered by low MOI axonal infection.


Assuntos
Regulação Viral da Expressão Gênica/genética , Inativação Gênica , Herpesvirus Humano 1/genética , Herpesvirus Suídeo 1/genética , Neurônios/virologia , Replicação Viral/genética , Animais , Células Cultivadas , Genoma Viral/genética , Herpesvirus Humano 1/fisiologia , Suínos , Proteínas Virais/genética , Latência Viral/genética
13.
mBio ; 7(1): e02145-15, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838720

RESUMO

UNLABELLED: Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS). Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs). The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-ß) or gamma interferon (IFN-γ) significantly diminished the number of herpes simplex virus 1 (HSV-1) and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-ß induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-ß. Proteomic analysis of IFN-ß- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-ß induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion. IMPORTANCE: Neurons are highly polarized cells with long axonal processes that connect to distant targets. PNS axons that innervate peripheral tissues are exposed to various situations that follow infection, inflammation, and damage of the tissue. After viral infection in the periphery, axons represent potential front-line barriers to PNS infection and damage. Indeed, most viral infections do not spread to the PNS, yet the mechanisms responsible are not well studied. We devised an experimental system to study how axons respond to inflammatory cytokines that would be produced by infected tissues. We found that axons respond differentially to type I and type II interferons. The response to type I interferon (IFN-ß) is a rapid axon-only response. The response to type II interferon (IFN-γ) involves long-distance signaling to the PNS cell body. These responses to two interferons erect an efficient and rapid barrier to PNS infection.


Assuntos
Axônios/imunologia , Axônios/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Suídeo 1/imunologia , Interferon beta/metabolismo , Interferon gama/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Ratos Sprague-Dawley
14.
mBio ; 6(2)2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25805728

RESUMO

UNLABELLED: Infection by alphaherpesviruses invariably results in invasion of the peripheral nervous system (PNS) and establishment of either a latent or productive infection. Infection begins with long-distance retrograde transport of viral capsids and tegument proteins in axons toward the neuronal nuclei. Initial steps of axonal entry, retrograde transport, and replication in neuronal nuclei are poorly understood. To better understand how the mode of infection in the PNS is determined, we utilized a compartmented neuron culturing system where distal axons of PNS neurons are physically separated from cell bodies. We infected isolated axons with fluorescent-protein-tagged pseudorabies virus (PRV) particles and monitored viral entry and transport in axons and replication in cell bodies during low and high multiplicities of infection (MOIs of 0.01 to 100). We found a threshold for efficient retrograde transport in axons between MOIs of 1 and 10 and a threshold for productive infection in the neuronal cell bodies between MOIs of 1 and 0.1. Below an MOI of 0.1, the viral genomes that moved to neuronal nuclei were silenced. These genomes can be reactivated after superinfection by a nonreplicating virus, but not by a replicating virus. We further showed that viral particles at high-MOI infections compete for axonal proteins and that this competition determines the number of viral particles reaching the nuclei. Using mass spectrometry, we identified axonal proteins that are differentially regulated by PRV infection. Our results demonstrate the impact of the multiplicity of infection and the axonal milieu on the establishment of neuronal infection initiated from axons. IMPORTANCE: Alphaherpesvirus genomes may remain silent in peripheral nervous system (PNS) neurons for the lives of their hosts. These genomes occasionally reactivate to produce infectious virus that can reinfect peripheral tissues and spread to other hosts. Here, we use a neuronal culture system to investigate the outcome of axonal infection using different numbers of viral particles and coinfection assays. We found that the dynamics of viral entry, transport, and replication change dramatically depending on the number of virus particles that infect axons. We demonstrate that viral genomes are silenced when the infecting particle number is low and that these genomes can be reactivated by superinfection with UV-inactivated virus, but not with replicating virus. We further show that viral invasion rapidly changes the profiles of axonal proteins and that some of these axonal proteins are rate limiting for efficient infection. Our study provides new insights into the establishment of silent versus productive alphaherpesvirus infections in the PNS.


Assuntos
Axônios/química , Axônios/virologia , Núcleo Celular/virologia , Herpesvirus Suídeo 1/fisiologia , Internalização do Vírus , Latência Viral , Replicação Viral , Animais , Células Cultivadas , Herpesvirus Suídeo 1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Proteínas/análise , Ratos Sprague-Dawley , Suínos
15.
Proteomics ; 15(12): 1943-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25764121

RESUMO

Viruses are intracellular parasites that can only replicate and spread in cells of susceptible hosts. Alpha herpesviruses (α-HVs) contain double-stranded DNA genomes of at least 120 kb, encoding for 70 or more genes. The viral genome is contained in an icosahedral capsid that is surrounded by a proteinaceous tegument layer and a lipid envelope. Infection starts in epithelial cells and spreads to the peripheral nervous system. In the natural host, α-HVs establish a chronic latent infection that can be reactivated and rarely spread to the CNS. In the nonnatural host, viral infection will in most cases spread to the CNS with often fatal outcome. The host response plays a crucial role in the outcome of viral infection. α-HVs do not encode all the genes required for viral replication and spread. They need a variety of host gene products including RNA polymerase, ribosomes, dynein, and kinesin. As a result, the infected cell is dramatically different from the uninfected cell revealing a complex and dynamic interplay of viral and host components required to complete the virus life cycle. In this review, we describe the pivotal contribution of MS-based proteomics studies over the past 15 years to understand the complicated life cycle and pathogenesis of four α-HV species from the alphaherpesvirinae subfamily: Herpes simplex virus-1, varicella zoster virus, pseudorabies virus and bovine herpes virus-1. We describe the viral proteome dynamics during host infection and the host proteomic response to counteract such pathogens.


Assuntos
Alphaherpesvirinae/fisiologia , Infecções por Herpesviridae/metabolismo , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Proteínas Virais/metabolismo , Animais , Bovinos , Infecções por Herpesviridae/virologia , Replicação Viral
16.
Cell Host Microbe ; 13(4): 379-93, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23601101

RESUMO

Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central (CNS) nervous systems. The CNS is protected from most virus infections by effective immune responses and multilayer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections.


Assuntos
Sistema Nervoso Central/virologia , Sistema Nervoso Periférico/virologia , Viroses/virologia , Alphaherpesvirinae/imunologia , Animais , Sistema Nervoso Central/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Humanos , Sistema Nervoso Periférico/imunologia , Viroses/imunologia
17.
Cell Host Microbe ; 13(1): 54-66, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23332155

RESUMO

After replicating in epithelial cells, alphaherpesviruses such as pseudorabies virus (PRV) invade axons of peripheral nervous system neurons and undergo retrograde transport toward the distant cell bodies. Although several viral proteins engage molecular motors to facilitate transport, the initial steps and neuronal responses to infection are poorly understood. Using compartmented neuron cultures to physically separate axon infection from cell bodies, we found that PRV infection induces local protein synthesis in axons, including proteins involved in cytoskeletal remodeling, intracellular trafficking, signaling, and metabolism. This rapid translation of axonal mRNAs is required for efficient PRV retrograde transport and infection of cell bodies. Furthermore, induction of axonal damage, which also induces local protein synthesis, prior to infection reduces virion trafficking, suggesting that host damage signals and virus particles compete for retrograde transport. Thus, similar to axonal damage, virus infection induces local protein translation in axons, and viruses likely exploit this response for invasion.


Assuntos
Axônios/metabolismo , Herpesvirus Suídeo 1/metabolismo , Neurônios/metabolismo , Biossíntese de Proteínas , Pseudorraiva/genética , Proteínas Virais/metabolismo , Animais , Anexina A2/genética , Anexina A2/metabolismo , Axônios/virologia , Células Cultivadas , Herpesvirus Suídeo 1/genética , Interações Hospedeiro-Patógeno , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/virologia , Periferinas , Pseudorraiva/metabolismo , Pseudorraiva/virologia , Ratos , Ratos Sprague-Dawley , Suínos , Proteínas Virais/genética
18.
J Virol ; 87(3): 1893-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175361

RESUMO

The adenovirus type 5 nonstructural L4-100K protein is indispensable for efficient lytic infection. During the late phase, L4-100K promotes selective translation of viral late transcripts and mediates the trimerization of the major capsid protein hexon. In the present study, the role of a potential nuclear export signal in L4-100K was investigated. Intriguingly, amino acid substitutions in this sequence resulted in severely diminished progeny virus production, seemingly by precluding proper hexon biogenesis.


Assuntos
Adenovírus Humanos/fisiologia , Substituição de Aminoácidos , Proteínas do Capsídeo/metabolismo , Sinais de Exportação Nuclear , Proteínas não Estruturais Virais/metabolismo , Adenovírus Humanos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Multimerização Proteica , Proteínas não Estruturais Virais/genética
19.
Nat Rev Microbiol ; 9(6): 427-39, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21522191

RESUMO

Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Replicação Viral/fisiologia , Actinas/química , Adenoviridae/fisiologia , Animais , Transformação Celular Viral/fisiologia , Endocitose/fisiologia , Vírus da Hepatite B/fisiologia , Herpesviridae/fisiologia , Humanos , Vírus do Sarcoma de Rous/fisiologia , Vírus 40 dos Símios/fisiologia , Proteínas Virais/metabolismo , Vírion/fisiologia , Montagem de Vírus , Proteínas rho de Ligação ao GTP/metabolismo
20.
J Virol ; 83(10): 4778-90, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19264777

RESUMO

The adenovirus type 5 (Ad5) late region 4 (L4) 100-kDa nonstructural protein (L4-100K) mediates inhibition of cellular protein synthesis and selective translation of tripartite leader (TL)-containing viral late mRNAs via ribosome shunting. In addition, L4-100K has been implicated in the trimerization and nuclear localization of hexon protein. We previously proved that L4-100K is a substrate of the protein arginine methylation machinery, an emergent posttranslational modification system involved in a growing list of cellular processes, including transcriptional regulation, cell signaling, RNA processing, and DNA repair. As understood at present, L4-100K arginine methylation involves protein arginine methyltransferase 1 (PRMT1), which asymmetrically dimethylates arginines embedded in arginine-glycine-glycine (RGG) or glycine-arginine-rich (GAR) domains. To identify the methylated arginine residues and assess the role of L4-100K arginine methylation, we generated amino acid substitution mutations in the RGG and GAR motifs to examine their effects in Ad-infected and plasmid-transfected cells. Arginine-to-glycine exchanges in the RGG boxes significantly diminished L4-100K methylation in the course of an infection and substantially reduced virus growth, demonstrating that L4-100K methylation in RGG motifs is an important host cell function required for efficient Ad replication. Our data further indicate that PRMT1-catalyzed arginine methylation in the RGG boxes regulates the binding of L4-100K to hexon and promotes the capsid assembly of the structural protein as well as modulating TL-mRNA interaction. Furthermore, substitutions in GAR, but not RGG, regions affected L4-100K nuclear import, implying that the nuclear localization signal of L4-100K is located within the GAR sequence.


Assuntos
Adenovírus Humanos/fisiologia , Arginina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Humanos , Metilação , Mutação Puntual , RNA Mensageiro/metabolismo , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...