Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172201, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583630

RESUMO

As glacier degradation is intensifying worldwide, understanding how and when glacial runoff is important becomes imperative for economic planning and societal adaptation in response to climate change. This research highlights a probable emergence of new low-flow periods, ranging from one to several weeks, with an anticipated 50-90 % reduction in runoff even in major rivers originating in glacierized mountains by the mid to late 21th century. While the predicted decline in annual and monthly runoff appears moderate for most glaciated regions globally, the emergence of new deglaciation-induced summer low flow periods could create critical "bottle necks" constraining effective water resources management. In this study, a nested catchment approach (7.6-2259 km2) in conjunction with an isotopic tracer method (D, 18O), was employed to quantify the seasonal dynamics of snow and glacial meltwater and rainfall contribution to runoff across various scales of river catchments for the underreported Caucasus Mountains. Although the contribution of meltwater was predictably dominant in the headwaters (75-100 %), it still constituted a substantial 50-60 % of river runoff in the lower reaches most of the time from June to September. While the relative capacity for rainwater storage was found to significantly increase with watershed scale, during weeks devoid of noteworthy rainfall, the runoff in river basins with a mere 7 % glaciation basically entirely consists of what is formed in the glacierized headwaters. The glacial runoff was prevalent in the melt component from late July/early August to mid-September: not less than 30-60 % to the total runoff in the headwaters and 30-40 % in the lower reaches. An approach is proposed to account for the spatial heterogeneity of stable water isotopic content within snow cover and glacier ice. Sources of uncertainties and soundness of assumptions typically used for isotopic hydrograph separation are discussed with particular consideration given to the study objectives.

2.
Isotopes Environ Health Stud ; 52(4-5): 468-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26862787

RESUMO

We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.


Assuntos
Deutério/análise , Lagos/análise , Lagos/química , Regiões Antárticas , Gelo/análise , Isótopos de Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...