Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nat Prod Res ; 36(6): 1552-1557, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33550857

RESUMO

Manuka honey (MkH), derived from New Zealand manuka tree (Leptospermum scoparium), is considered a therapeutic agent owing to its antibacterial, antioxidant, antifungal, antiviral, anti-inflammatory, and wound healing activities. In this study, the inhibitory effect of five honey types, including MkH, on HIV-1 RT activity was evaluated, using an RT assay colorimetric kit, according to the manufacturer's instructions with slight modifications. MkH exerted the strongest inhibitory effect in a dose-dependent manner, with a half maximal inhibitory concentration (IC50) of approximately 14.8 mg/mL. Moreover, among the MkH constituents, methylglyoxal (MGO) and 2-methoxybenzoic acid (2-MBA) were determined to possess anti-HIV-1 RT activity. MGO and 2-MBA in MkH were identified by High Performance Liquid Chromatography (HPLC) and Liquid Chromatograph - Mass Spectrometry (LC-MS/MS). The findings suggest that the inhibitory effect of MkH on the HIV-1 RT activity is mediated by multiple constituents with different physical and chemical properties.


Assuntos
HIV-1 , Mel , Cromatografia Líquida , Mel/análise , Humanos , DNA Polimerase Dirigida por RNA , Espectrometria de Massas em Tandem
2.
Pflugers Arch ; 470(6): 937-947, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29500670

RESUMO

The G protein-regulated inducer of neurite growth (GRIN) family has three isoforms (GRIN1-3), which bind to the Gαi/o subfamily of G protein that mediate signal processing via G protein-coupled receptors (GPCRs). Here, we show that GRIN3 is involved in regulation of dopamine-dependent behaviors and is essential for activation of the dopamine receptors (DAR)-ß-arrestin signaling cascade. Analysis of functional regions of GRIN3 showed that a di-cysteine motif (Cys751/752) is required for plasma membrane localization. GRIN3 was co-immunoprecipitated with GPCR kinases 2/6 and ß-arrestins 1/2. Among GRINs, only GRIN3, which is highly expressed in striatum, strongly interacted with ß-arrestin 2. We also generated GRIN3-knockout mice (GRIN3KO). GRIN3KO exhibited reduced locomotor activity and increased anxiety-like behavior in the elevated maze test, as well as a reduced locomoter response to dopamine stimulation. We also examined the phosphorylation of Akt at threonine 308 (phospho308-Akt), which is dephosphorylated via a ß-arrestin 2-mediated pathway. Dephosphorylation of phospho308-Akt via the D2R-ß-arrestin 2 signaling pathway was completely abolished in striatum of GRIN3KO. Our results suggest that GRIN3 has a role in recruitment and assembly of proteins involved in ß-arrestin-dependent, G protein-independent signaling.


Assuntos
Ansiedade/metabolismo , Corpo Estriado/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Dopaminérgicos/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Locomoção , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Ligação Proteica
3.
FASEB J ; 31(3): 910-919, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881485

RESUMO

Cell migration to chemoattractants is critically important in both normal physiology and the pathogenesis of many diseases. In GPCR-mediated chemotaxis, GPCRs transduce the gradient of an extracellular chemotactic ligand into intracellular responses via the activation of heterotrimeric G proteins. However, ligand-induced G-protein activation has not been directly imaged as yet in mammalian chemotaxing cells. We developed a Förster resonance energy transfer (FRET) probe, R10-Gi, by linking the Gi-protein α subunit to the regulator of G-protein signaling domain. The R10-Gi probe was coupled with a chemoattractant leukotriene B4 (LTB4) receptor 1 (BLT1) that induced the receptor to display a high-affinity ligand binding activity (Kd = 0.91 nM) in HEK293 cells. The R10-Gi probe exhibited an increased FRET signal in accord with the LTB4-dependent activation of Gi Furthermore, neutrophil-like differentiated human leukemia cell line 60 that expressed the intrinsic BLT1 displayed temporal Gi-protein activation in an area localized to the leading edge during chemotaxis in a shallow gradient of LTB4 These findings afford an opportunity to clarify the mechanisms underlying the subcellular regulation of Gi-protein activity, as well as GPCR-mediated ligand sensing, during chemotaxis in mammalian cells.-Masuda, K., Kitakami, J., Kozasa, T., Kodama, T., Ihara, S., Hamakubo, T. Visualization of ligand-induced Gi-protein activation in chemotaxing cells.


Assuntos
Quimiotaxia , Transferência Ressonante de Energia de Fluorescência/métodos , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HL-60 , Humanos , Leucotrieno B4/metabolismo , Microscopia de Fluorescência/métodos , Ligação Proteica , Transporte Proteico , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores do Leucotrieno B4/metabolismo
4.
Mol Pharmacol ; 86(3): 252-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24958816

RESUMO

Gastrin-releasing peptide receptor (GRPR) is ectopically expressed in over 60% of colon cancers. GRPR expression has been correlated with increased colon cancer cell migration. However, the signaling pathway by which GRPR activation leads to increased cancer cell migration is not well understood. We set out to molecularly dissect the GRPR signaling pathways that control colon cancer cell migration through regulation of small GTPase RhoA. Our results show that GRP stimulation activates RhoA predominantly through G13 heterotrimeric G-protein signaling. We also demonstrate that postsynaptic density 95/disk-large/ZO-1 (PDZ)-RhoGEF (PRG), a member of regulator of G-protein signaling (RGS)-homology domain (RH) containing guanine nucleotide exchange factors (RH-RhoGEFs), is the predominant activator of RhoA downstream of GRPR. We found that PRG is required for GRP-stimulated colon cancer cell migration, through activation of RhoA-Rho-associated kinase (ROCK) signaling axis. In addition, PRG-RhoA-ROCK pathway also contributes to cyclo-oxygenase isoform 2 (Cox-2) expression. Increased Cox-2 expression is correlated with increased production of prostaglandin-E2 (PGE2), and Cox-2-PGE2 signaling contributes to total GRPR-mediated cancer cell migration. Our analysis reveals that PRG is overexpressed in colon cancer cell lines. Overall, our results have uncovered a key mechanism for GRPR-regulated colon cancer cell migration through the Gα13-PRG-RhoA-ROCK pathway.


Assuntos
Neoplasias do Colo/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores da Bombesina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células CACO-2 , Movimento Celular , Neoplasias do Colo/patologia , Ciclo-Oxigenase 2/biossíntese , Dinoprostona/biossíntese , Proteína 4 Homóloga a Disks-Large , Células HT29 , Humanos , Estrutura Terciária de Proteína , Transdução de Sinais , Quinases Associadas a rho/metabolismo
5.
Blood ; 123(3): 442-50, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24081657

RESUMO

von Willebrand factor (vWF) secretion by endothelial cells (ECs) is essential for hemostasis and thrombosis; however, the molecular mechanisms are poorly understood. Interestingly, we observed increased bleeding in EC-Gα13(-/-);Gα12(-/-) mice that could be normalized by infusion of human vWF. Blood from Gα12(-/-) mice exhibited significantly reduced vWF levels but normal vWF multimers and impaired laser-induced thrombus formation, indicating that Gα12 plays a prominent role in EC vWF secretion required for hemostasis and thrombosis. In isolated buffer-perfused mouse lungs, basal vWF levels were significantly reduced in Gα12(-/-), whereas thrombin-induced vWF secretion was defective in both EC-Gαq(-/-);Gα11(-/-) and Gα12(-/-) mice. Using siRNA in cultured human umbilical vein ECs and human pulmonary artery ECs, depletion of Gα12 and soluble N-ethylmaleimide-sensitive-fusion factor attachment protein α (α-SNAP), but not Gα13, inhibited both basal and thrombin-induced vWF secretion, whereas overexpression of activated Gα12 promoted vWF secretion. In Gαq, p115 RhoGEF, and RhoA-depleted human umbilical vein ECs, thrombin-induced vWF secretion was reduced by 40%, whereas basal secretion was unchanged. Finally, in vitro binding assays revealed that Gα12 N-terminal residues 10-15 mediated the binding of Gα12 to α-SNAP, and an engineered α-SNAP binding-domain minigene peptide blocked basal and evoked vWF secretion. Discovery of obligatory and complementary roles of Gα12 and Gαq/11 in basal vs evoked EC vWF secretion may provide promising new therapeutic strategies for treatment of thrombotic disease.


Assuntos
Células Endoteliais/citologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Fator de von Willebrand/metabolismo , Animais , Anticorpos Monoclonais/química , Regulação da Expressão Gênica , Hemostasia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Knockout , Adesividade Plaquetária , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Trombose
6.
J Biol Chem ; 288(47): 33978-33984, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24114843

RESUMO

We previously characterized a Gα12-specific signaling pathway that stimulates the transcription of the E3 ligase RFFL via the protein kinase ARAF and ERK. This pathway leads to persistent PKC activation and is important for sustaining fibroblast migration. However, questions remain regarding how Gα12 specifically activates ARAF, which transcription factor is involved in Gα12-mediated RFFL expression, and whether RFFL is important for cell migration stimulated by other signaling mechanisms that can activate ERK. In this study, we show that replacement of the Gα12 residue Arg-264 with Gln, which is the corresponding Gα13 residue, abrogates the ability of Gα12 to interact with or activate ARAF. We also show that Gα12 can no longer interact with and activate an ARAF mutant with its C-terminal sequence downstream of the kinase domain being replaced with the corresponding CRAF sequence. These results explain why Gα12, but not Gα13, specifically activates ARAF but not CRAF. Together with our finding that recombinant Gα12 is sufficient for stimulating the kinase activity of ARAF, this study reveals an ARAF activation mechanism that is different from that of CRAF. In addition, we show that this Gα12-ARAF-ERK pathway stimulates RFFL transcription through the transcription factor c-Myc. We further demonstrate that EGF, which signals through CRAF, and an activated BRAF mutant also activate PKC and stimulate cell migration through up-regulating RFFL expression. Thus, RFFL-mediated PKC activation has a broad significance in cell migration regulation.


Assuntos
Movimento Celular/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Ubiquitina-Proteína Ligases/biossíntese , Quinases raf/metabolismo , Substituição de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Ativação Enzimática/fisiologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos , Mutação de Sentido Incorreto , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina-Proteína Ligases/genética , Quinases raf/genética
7.
Sci Signal ; 6(288): ra69, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23943609

RESUMO

The atrial G protein (heterotrimeric guanine nucleotide-binding protein)-regulated inwardly rectifying K(+) (GIRK1 and GIRK4) heterotetrameric channels underlie the acetylcholine-induced K(+) current responsible for vagal inhibition of heart rate and are activated by the G protein ßγ subunits (Gßγ). We used a multistage protein-protein docking approach with data from published structures of GIRK1 and Gßγ to generate an experimentally testable interaction model of Gßγ docked onto the cytosolic domains of the GIRK1 homotetramer. The model suggested a mechanism by which Gßγ promotes the open state of a specific cytosolic gate in the channel, the G loop gate. The predicted structure showed that the Gß subunit interacts with the channel near the site of action for ethanol and stabilizes an intersubunit cleft formed by two loops (LM and DE) of adjacent channel subunits. Using a heterologous expression system, we disrupted the predicted GIRK1- and Gßγ-interacting residues by mutation of one protein and then rescued the regulatory activity by mutating reciprocal residues in the other protein. Disulfide cross-linking of channels and Gßγ with cysteine mutations at the predicted interacting residues yielded activated channels. The mechanism of Gßγ-induced activation of GIRK4 was distinct from GIRK1 homotetramers. However, GIRK1-GIRK4 heterotetrameric channels activated by Gßγ displayed responses indicating that the GIRK1 subunit dominated the response pattern. This work demonstrated that combining computational with experimental approaches is an effective method for elucidating interactions within protein complexes that otherwise might be challenging to decipher.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Conformação Proteica , Biologia Computacional , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Mutagênese , Ligação Proteica , Eletricidade Estática
8.
Cell Signal ; 25(11): 2085-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23816534

RESUMO

p115RhoGEF is a member of a family of Rho-specific guanine nucleotide exchange factors that also contains a regulator of G protein signaling homology domain (RH-RhoGEFs) that serves as a link between Gα13 signaling and RhoA activation. While the mechanism of regulation of p115RhoGEF by Gα13 is becoming well-known, the role of other regulatory mechanisms, such as post-translational modification or autoinhibition, in mediating p115RhoGEF activity is less well-characterized. Here, putative phosphorylation sites on p115RhoGEF are identified and characterized. Mutation of Ser(330) leads to a decrease in serum response element-mediated transcription as well as decreased activation by Gα13 in vitro. Additionally, this study provides the first report of the binding kinetics between full-length p115RhoGEF and RhoA in its various nucleotide states and examines the binding kinetics of phospho-mutant p115RhoGEF to RhoA. These data, together with other recent reports on regulatory mechanisms of p115RhoGEF, suggest that this putative phosphorylation site serves as a means for initiation or relief of autoinhibition of p115RhoGEF, providing further insight into the regulation of its activity.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Serina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Genes Reporter , Humanos , Cinética , Luciferases/genética , Luciferases/metabolismo , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Elemento de Resposta Sérica , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/genética
9.
Structure ; 21(3): 438-48, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23434405

RESUMO

The heterotrimeric G protein Gαq is a key regulator of blood pressure, and excess Gαq signaling leads to hypertension. A specific inhibitor of Gαq is the GTPase activating protein (GAP) known as regulator of G protein signaling 2 (RGS2). The molecular basis for how Gαq/11 subunits serve as substrates for RGS proteins and how RGS2 mandates its selectivity for Gαq is poorly understood. In crystal structures of the RGS2-Gαq complex, RGS2 docks to Gαq in a different orientation from that observed in RGS-Gαi/o complexes. Despite its unique pose, RGS2 maintains canonical interactions with the switch regions of Gαq in part because its α6 helix adopts a distinct conformation. We show that RGS2 forms extensive interactions with the α-helical domain of Gαq that contribute to binding affinity and GAP potency. RGS subfamilies that do not serve as GAPs for Gαq are unlikely to form analogous stabilizing interactions.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Simulação de Dinâmica Molecular , Subunidades Proteicas/química , Proteínas RGS/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Escherichia coli/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Camundongos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Proteínas RGS/genética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Relação Estrutura-Atividade
10.
Nat Cell Biol ; 14(7): 686-96, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22609986

RESUMO

Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates AGC protein kinases including protein kinase C (PKC) and regulates cellular functions such as cell migration. However, its regulation remains poorly understood. Here we show that lysophosphatidic acid (LPA) induces two phases of PKC-δ hydrophobic motif phosphorylation. The late phase is mediated by Gα(12), which specifically activates ARAF, leading to upregulation of the RFFL E3 ubiquitin ligase and subsequent ubiquitylation and degradation of the PRR5L subunit of mTORC2. Destabilization of PRR5L, a suppressor of mTORC2-mediated hydrophobic motif phosphorylation of PKC-δ, but not AKT, results in PKC-δ hydrophobic motif phosphorylation and activation. This Gα(12)-mediated signalling pathway for mTORC2 regulation is critically important for fibroblast migration and pulmonary fibrosis development.


Assuntos
Fibroblastos/enzimologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Pulmão/patologia , Complexos Multiproteicos/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas/metabolismo , Fibrose Pulmonar/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Bleomicina , Movimento Celular , Modelos Animais de Doenças , Ativação Enzimática , Estabilidade Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Pulmão/enzimologia , Lisofosfolipídeos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Quinase C-delta/genética , Estabilidade Proteica , Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transativadores/genética , Transfecção , Ubiquitina-Proteína Ligases , Ubiquitinação
11.
J Biochem ; 150(4): 357-69, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21873336

RESUMO

G protein-mediated signal transduction can transduce signals from a large variety of extracellular stimuli into cells and is the most widely used mechanism for cell communication at the membrane. The RhoGTPase family has been well established as key regulators of cell growth, differentiation and cell shape changes. Among G protein-mediated signal transduction, G12/13-mediated signalling is one mechanism to regulate RhoGTPase activity in response to extracellular stimuli. The alpha subunits of G12 or G13 have been shown to interact with members of the RH domain containing guanine nucleotide exchange factors for Rho (RH-RhoGEF) family of proteins to directly connect G protein-mediated signalling and RhoGTPase signalling. The G12/13-RH-RhoGEF signalling mechanism is well conserved over species and is involved in critical steps for cell physiology and disease conditions, including embryonic development, oncogenesis and cancer metastasis. In this review, we will summarize current progress on this important signalling mechanism.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos
12.
J Biol Chem ; 286(23): 20625-36, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21507947

RESUMO

RH-RhoGEFs are a family of guanine nucleotide exchange factors that contain a regulator of G protein signaling homology (RH) domain. The heterotrimeric G protein Gα(13) stimulates the guanine nucleotide exchange factor (GEF) activity of RH-RhoGEFs, leading to activation of RhoA. The mechanism by which Gα(13) stimulates the GEF activity of RH-RhoGEFs, such as p115RhoGEF, has not yet been fully elucidated. Here, specific residues in Gα(13) that mediate activation of p115RhoGEF are identified. Mutation of these residues significantly impairs binding of Gα(13) to p115RhoGEF as well as stimulation of GEF activity. These data suggest that the exchange activity of p115RhoGEF is stimulated allosterically by Gα(13) and not through its interaction with a secondary binding site. A crystal structure of Gα(13) bound to the RH domain of p115RhoGEF is also presented, which differs from a previously crystallized complex with a Gα(13)-Gα(i1) chimera. Taken together, these data provide new insight into the mechanism by which p115RhoGEF is activated by Gα(13).


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Fatores de Troca do Nucleotídeo Guanina/química , Complexos Multienzimáticos/química , Regulação Alostérica/fisiologia , Animais , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fatores de Troca de Nucleotídeo Guanina Rho , Relação Estrutura-Atividade
13.
Science ; 330(6006): 974-80, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20966218

RESUMO

Transmembrane signals initiated by a broad range of extracellular stimuli converge on nodes that regulate phospholipase C (PLC)-dependent inositol lipid hydrolysis for signal propagation. We describe how heterotrimeric guanine nucleotide-binding proteins (G proteins) activate PLC-ßs and in turn are deactivated by these downstream effectors. The 2.7-angstrom structure of PLC-ß3 bound to activated Gα(q) reveals a conserved module found within PLC-ßs and other effectors optimized for rapid engagement of activated G proteins. The active site of PLC-ß3 in the complex is occluded by an intramolecular plug that is likely removed upon G protein-dependent anchoring and orientation of the lipase at membrane surfaces. A second domain of PLC-ß3 subsequently accelerates guanosine triphosphate hydrolysis by Gα(q), causing the complex to dissociate and terminate signal propagation. Mutations within this domain dramatically delay signal termination in vitro and in vivo. Consequently, this work suggests a dynamic catch-and-release mechanism used to sharpen spatiotemporal signals mediated by diverse sensory inputs.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fosfolipase C beta/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Guanosina Trifosfato/metabolismo , Humanos , Ligação de Hidrogênio , Hidrólise , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Fosfolipase C beta/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
14.
Sci Signal ; 3(121): ra37, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20460648

RESUMO

Evidence from Drosophila and cultured cell studies supports a role for heterotrimeric guanosine triphosphate-binding proteins (G proteins) in Wnt signaling. Wnt inhibits the degradation of the transcriptional regulator beta-catenin. We screened the alpha and betagamma subunits of major families of G proteins in a Xenopus egg extract system that reconstitutes beta-catenin degradation. We found that Galpha(o), Galpha(q), Galpha(i2), and Gbetagamma inhibited beta-catenin degradation. Gbeta(1)gamma(2) promoted the phosphorylation and activation of the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) by recruiting glycogen synthase kinase 3 (GSK3) to the membrane and enhancing its kinase activity. In both a reporter gene assay and an in vivo assay, c-betaARK (C-terminal domain of beta-adrenergic receptor kinase), an inhibitor of Gbetagamma, blocked LRP6 activity. Several components of the Wnt-beta-catenin pathway formed a complex: Gbeta(1)gamma(2), LRP6, GSK3, axin, and dishevelled. We propose that free Gbetagamma and Galpha subunits, released from activated G proteins, act cooperatively to inhibit beta-catenin degradation and activate beta-catenin-mediated transcription.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Relacionadas a Receptor de LDL/biossíntese , Transcrição Gênica/fisiologia , beta Catenina/metabolismo , Animais , Drosophila melanogaster , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Quinase 3 da Glicogênio Sintase/genética , Células HeLa , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Xenopus laevis , beta Catenina/genética , Quinases de Receptores Adrenérgicos beta/genética , Quinases de Receptores Adrenérgicos beta/metabolismo
15.
Science ; 327(5963): 340-3, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20075254

RESUMO

Integrins mediate cell adhesion to the extracellular matrix and transmit signals within the cell that stimulate cell spreading, retraction, migration, and proliferation. The mechanism of integrin outside-in signaling has been unclear. We found that the heterotrimeric guanine nucleotide-binding protein (G protein) Galpha13 directly bound to the integrin beta3 cytoplasmic domain and that Galpha13-integrin interaction was promoted by ligand binding to the integrin alphaIIbbeta3 and by guanosine triphosphate (GTP) loading of Galpha13. Interference of Galpha13 expression or a myristoylated fragment of Galpha13 that inhibited interaction of alphaIIbbeta3 with Galpha13 diminished activation of protein kinase c-Src and stimulated the small guanosine triphosphatase RhoA, consequently inhibiting cell spreading and accelerating cell retraction. We conclude that integrins are noncanonical Galpha13-coupled receptors that provide a mechanism for dynamic regulation of RhoA.


Assuntos
Plaquetas/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Integrina beta3/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Retração do Coágulo , Fibrinogênio/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Adesividade Plaquetária , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
16.
Neurosignals ; 17(1): 55-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19212140

RESUMO

Accumulating data indicate that G12 subfamily (Galpha12/13)-mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. It has been demonstrated that Galpha12/13-mediated signals form networks with other signaling proteins at various levels, from cell surface receptors to transcription factors, to regulate cellular responses. Galpha12/13 have slow rates of nucleotide exchange and GTP hydrolysis, and specifically target RhoGEFs containing an amino-terminal RGS homology domain (RH-RhoGEFs), which uniquely function both as a GAP and an effector for Galpha12/13. In this review, we will focus on the mechanisms regulating the Galpha12/13 signaling system, particularly the Galpha12/13-RH-RhoGEF-Rho pathway, which can regulate a wide variety of cellular functions from migration to transformation.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Animais , Doenças Cardiovasculares/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Sistema Imunitário/fisiologia , Neoplasias/metabolismo , Spodoptera , Proteínas rho de Ligação ao GTP/metabolismo
17.
J Biol Chem ; 284(8): 5000-9, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19074425

RESUMO

The transient protein-protein interactions induced by guanine nucleotide-dependent conformational changes of G proteins play central roles in G protein-coupled receptor-mediated signaling systems. Leukemia-associated RhoGEF (LARG), a guanine nucleotide exchange factor for Rho, contains an RGS homology (RH) domain and Dbl homology/pleckstrin homology (DH/PH) domains and acts both as a GTPase-activating protein (GAP) and an effector for Galpha(13). However, the molecular mechanism of LARG activation upon Galpha(13) binding is not yet well understood. In this study, we analyzed the Galpha(13)-LARG interaction using cellular and biochemical methods, including a surface plasmon resonance (SPR) analysis. The results obtained using various LARG fragments demonstrated that active Galpha(13) interacts with LARG through the RH domain, DH/PH domains, and C-terminal region. However, an alanine substitution at the RH domain contact position in Galpha(13) resulted in a large decrease in affinity. Thermodynamic analysis revealed that binding of Galpha(13) proceeds with a large negative heat capacity change (DeltaCp degrees ), accompanied by a positive entropy change (DeltaS degrees ). These results likely indicate that the binding of Galpha(13) with the RH domain triggers conformational rearrangements between Galpha(13) and LARG burying an exposed hydrophobic surface to create a large complementary interface, which facilitates complex formation through both GAP and effector interfaces, and activates the RhoGEF. We propose that LARG activation is regulated by an induced-fit mechanism through the GAP interface of Galpha(13).


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Substituição de Aminoácidos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Mutação de Sentido Incorreto , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho , Ressonância de Plasmônio de Superfície , Termodinâmica
18.
J Neurosci ; 28(52): 14176-88, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19109500

RESUMO

G-protein (Gbetagamma)-mediated voltage-dependent inhibition of N- and P/Q-type Ca(2+) channels contributes to presynaptic inhibition and short-term synaptic plasticity. The voltage dependence derives from the dissociation of Gbetagamma from the inhibited channels, but the underlying molecular and biophysical mechanisms remain largely unclear. In this study we investigated the role in this process of Ca(2+) channel beta subunit (Ca(v)beta) and a rigid alpha-helical structure between the alpha-interacting domain (AID), the primary Ca(v)beta docking site on the channel alpha(1) subunit, and the pore-lining IS6 segment. Gbetagamma inhibition of P/Q-type channels was reconstituted in giant inside-out membrane patches from Xenopus oocytes. Large populations of channels devoid of Ca(v)beta were produced by washing out a mutant Ca(v)beta with a reduced affinity for the AID. These beta-less channels were still inhibited by Gbetagamma, but without any voltage dependence, indicating that Ca(v)beta is indispensable for voltage-dependent Gbetagamma inhibition. A truncated Ca(v)beta containing only the AID-binding guanylate kinase (GK) domain could fully confer voltage dependence to Gbetagamma inhibition. Gbetagamma did not alter inactivation properties, and channels recovered from Gbetagamma inhibition exhibited the same activation property as un-inhibited channels, indicating that Gbetagamma does not dislodge Ca(v)beta from the inhibited channel. Furthermore, voltage-dependent Gbetagamma inhibition was abolished when the rigid alpha-helix between the AID and IS6 was disrupted by insertion of multiple glycines, which also eliminated Ca(v)beta regulation of channel gating, revealing a pivotal role of this rigid alpha-helix in both processes. These results suggest that depolarization-triggered movement of IS6, coupled to the subsequent conformational change of the Gbetagamma-binding pocket through a rigid alpha-helix induced partly by the Ca(v)beta GK domain, causes the dissociation of Gbetagamma and is fundamental to voltage-dependent Gbetagamma inhibition.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Ativação do Canal Iônico/fisiologia , Sequência de Aminoácidos , Animais , Biofísica , Células Cultivadas , Estimulação Elétrica/métodos , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/farmacologia , Guanilato Quinases/metabolismo , Insetos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutação/genética , Oócitos , Técnicas de Patch-Clamp/métodos , Ligação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/farmacologia , Fatores de Tempo , Xenopus laevis
19.
J Biol Chem ; 283(50): 34923-34, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18936096

RESUMO

Transmembrane signaling through G alpha(q)-coupled receptors is linked to physiological processes such as cardiovascular development and smooth muscle function. Recent crystallographic studies have shown how G alpha(q) interacts with two activation-dependent targets, p63RhoGEF and G protein-coupled receptor kinase 2 (GRK2). These proteins bind to the effector-binding site of G alpha(q) in a manner that does not appear to physically overlap with the site on G alpha(q) bound by regulator of G-protein signaling (RGS) proteins, which function as GTPase-activating proteins (GAPs). Herein we confirm the formation of RGS-G alpha(q)-GRK2/p63RhoGEF ternary complexes using flow cytometry protein interaction and GAP assays. RGS2 and, to a lesser extent, RGS4 are negative allosteric modulators of Galpha(q) binding to either p63RhoGEF or GRK2. Conversely, GRK2 enhances the GAP activity of RGS4 but has little effect on that of RGS2. Similar but smaller magnitude responses are induced by p63RhoGEF. The fact that GRK2 and p63RhoGEF respond similarly to these RGS proteins supports the hypothesis that GRK2 is a bona fide G alpha(q) effector. The results also suggest that signal transduction pathways initiated by GRK2, such as the phosphorylation of G protein-coupled receptors, and by p63RhoGEF, such as the activation of gene transcription, can be regulated by RGS proteins via both allosteric and GAP mechanisms.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas RGS/química , Sítio Alostérico , Ligação Competitiva , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo/métodos , GTP Fosfo-Hidrolases/metabolismo , Humanos , Cinética , Conformação Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Troca de Nucleotídeo Guanina Rho
20.
Dev Dyn ; 237(9): 2415-29, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18729205

RESUMO

GRIN1 (Gprin 1) is a signaling molecule coexpression of which with constitutively active form of Galphao can stimulate neurite extensions in Neuro2a cells, yet its in vivo roles remain elusive. Here, we examine expression profiles of GRIN1 during mouse development by in situ hybridization (ISH) and immunohistochemistry. ISH analysis revealed that GRIN1 expression was limited to the nervous system at all developmental stages tested: in the central nervous system, GRIN1 expression occurred within the entire embryonic mantle zones, while it became restricted to sets of nuclei at postnatal to adult stages. Immunohistochemistry using a GRIN1-specific antibody demonstrated that GRIN1 colocalized with Galphao at neuronal dendrites and axons, but it was not detected in glial cells. These results suggest that Galphao-GRIN1 pathway could mediate significant roles in neuronal migration and differentiation at embryonic stages and exert functions in wiring and/or maintenance of specific neural circuitries at postnatal to adult stages.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/embriologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Transporte/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/embriologia , Sistema Nervoso Periférico/metabolismo , Receptores de N-Metil-D-Aspartato , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...