Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 140(1): 741, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27475195

RESUMO

Passive Acoustic Mapping (PAM) enables real-time monitoring of ultrasound therapies by beamforming acoustic emissions emanating from the ultrasound focus. Reconstruction of the narrowband or broadband acoustic emissions component enables mapping of different physical phenomena, with narrowband emissions arising from non-linear propagation and scattering, non-inertial cavitation or tissue boiling, and broadband (generally, of significantly lower amplitude) indicating inertial cavitation. Currently, accurate classification of the received signals based on pre-defined frequency-domain comb filters cannot be guaranteed because varying levels of leakage occur as a function of signal amplitude and the choice of windowing function. This work presents a time-domain parametric model aimed at enabling accurate estimation of the amplitude of time-varying narrowband components in the presence of broadband signals. Conversely, the method makes it possible to recover a weak broadband signal in the presence of a dominant harmonic or other narrowband component. Compared to conventional comb filtering, the proposed sum-of-harmonics method enables PAM of cavitation sources that better reflect their physical location and extent.


Assuntos
Terapia por Ultrassom , Acústica , Humanos , Monitorização Fisiológica/métodos , Terapia por Ultrassom/métodos , Ultrassonografia
2.
J Acoust Soc Am ; 137(5): 2573-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25994690

RESUMO

Passive acoustic mapping (PAM) is a promising imaging method that enables real-time three-dimensional monitoring of ultrasound therapy through the reconstruction of acoustic emissions passively received on an array of ultrasonic sensors. A passive beamforming method is presented that provides greatly improved spatial accuracy over the conventionally used time exposure acoustics (TEA) PAM reconstruction algorithm. Both the Capon beamformer and the robust Capon beamformer (RCB) for PAM are suggested as methods to reduce interference artifacts and improve resolution, which has been one of the experimental issues previously observed with TEA. Simulation results that replicate the experimental artifacts are shown to suggest that bubble interactions are the chief cause. Analysis is provided to show that these multiple bubble artifacts are generally not reduced by TEA, while Capon-based methods are able to reduce the artifacts. This is followed by experimental results from in vitro experiments and in vivo oncolytic viral therapy trials that show improved results in PAM, where RCB is able to more accurately localize the acoustic activity than TEA.

3.
Artigo em Inglês | MEDLINE | ID: mdl-23143581

RESUMO

A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.


Assuntos
Acústica/instrumentação , Terapia por Ultrassom/instrumentação , Terapia por Ultrassom/métodos , Ágar/química , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Imagens de Fantasmas , Polivinil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA