Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37443751

RESUMO

Intracellular trafficking plays a critical role in the functioning of highly polarized cells, such as neurons. Transport of mRNAs, proteins, and other molecules to synaptic terminals maintains contact between neurons and ensures the transmission of nerve impulses. Cytoplasmic polyadenylation element binding (CPEB) proteins play an essential role in long-term memory (LTM) formation by regulating local translation in synapses. Here, we show that the 3'UTR of the Drosophila CPEB gene orb2 is required for targeting the orb2 mRNA and protein to synapses and that this localization is important for LTM formation. When the orb2 3'UTR is deleted, the orb2 mRNAs and proteins fail to localize in synaptic fractions, and pronounced LTM deficits arise. We found that the phenotypic effects of the orb2 3'UTR deletion were rescued by introducing the 3'UTR from the orb, another Drosophila CPEB gene. In contrast, the phenotypic effects of the 3'UTR deletion were not rescued by the 3'UTR from one of the Drosophila α-tubulin genes. Our results show that the orb2 mRNAs must be targeted to the correct locations in neurons and that proper targeting depends upon sequences in the 3'UTR.


Assuntos
Proteínas de Transporte , Proteínas de Drosophila , Animais , Proteínas de Transporte/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regiões 3' não Traduzidas/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Poliadenilação/genética , Drosophila/genética , Drosophila/metabolismo , Neurônios/metabolismo
2.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672258

RESUMO

Activation of local translation in neurites in response to stimulation is an important step in the formation of long-term memory (LTM). CPEB proteins are a family of translation factors involved in LTM formation. The Drosophila CPEB protein Orb2 plays an important role in the development and function of the nervous system. Mutations of the coding region of the orb2 gene have previously been shown to impair LTM formation. We found that a deletion of the 3'UTR of the orb2 gene similarly results in loss of LTM in Drosophila. As a result of the deletion, the content of the Orb2 protein remained the same in the neuron soma, but significantly decreased in synapses. Using RNA immunoprecipitation followed by high-throughput sequencing, we detected more than 6000 potential Orb2 mRNA targets expressed in the Drosophila brain. Importantly, deletion of the 3'UTR of orb2 mRNA also affected the localization of the Csp, Pyd, and Eya proteins, which are encoded by putative mRNA targets of Orb2. Therefore, the 3'UTR of the orb2 mRNA is important for the proper localization of Orb2 and other proteins in synapses of neurons and the brain as a whole, providing a molecular basis for LTM formation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Regiões 3' não Traduzidas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Memória de Longo Prazo/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Junções Íntimas/metabolismo
3.
Cells ; 10(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34831461

RESUMO

Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.


Assuntos
Núcleo Celular/metabolismo , Células Eucarióticas/metabolismo , Biossíntese de Proteínas , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473243

RESUMO

CPEB proteins are conserved translation regulators involved in multiple biological processes. One of these proteins in Drosophila, Orb2, is a principal player in spermatogenesis. It is required for meiosis and spermatid differentiation. During the later process, orb2 mRNA and protein are localized within the developing spermatid. To evaluate the role of the orb2 mRNA 3'UTR in spermatogenesis, we used the CRISPR/Cas9 system to generate a deletion of the orb2 3'UTR, orb2R. This deletion disrupts the process of spermatid differentiation but has no apparent effect on meiosis. Differentiation abnormalities include defects in the initial polarization of the 64-cell spermatid cysts, mislocalization of mRNAs and proteins in the elongating spermatid tails, altered morphology of the elongating spermatid tails, and defects in the assembly of the individualization complex. These disruptions in differentiation appear to arise because orb2 mRNA and protein are not properly localized within the 64-cell spermatid cyst.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Drosophila/genética , Espermatogênese , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Animais , Diferenciação Celular , Polaridade Celular , Drosophila , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência , Espermátides/citologia , Espermátides/metabolismo , Testículo/metabolismo
5.
Tissue Eng Part C Methods ; 27(6): 391-400, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34015967

RESUMO

Gene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated. These aspects of gene therapy drugs' usage became the subject of this study. To study plasmid biodistribution, toxicity, mutagenicity, and genotoxicity, we used previously described bicistronic genetic construct encoding human brain-derived neurotrophic factor (hBDNF) and human urokinase plasminogen activator (huPA) for nerve repair. Biodistribution studies were conducted in mice: a course of intramuscular plasmid injections was followed by the study of the content of the plasmid (real-time polymerase chain reaction) and recombinant proteins (enzyme-linked immunosorbent assay) in murine organs and tissues. The study of the plasmid chronic toxicity was carried out on rats with registration of their weight dynamics, neurological status, emotional state, and blood test parameters. The mutagenicity of the plasmid was studied in an in vivo DNA comet test in mice. Plasmid genotoxicity was investigated in the model of somatic recombination in Drosophila females. We have shown that plasmids can disseminate from the injection site, but do not mediate ectopic expression of growth factors upon repeated intramuscular injections. The studied plasmid also does not reveal toxic, mutagenic, or genotoxic effects. During the toxicological study on rats, we have shown that daily injections of this genetic construct, despite its ability to disseminate from the injection site, do not affect the physical, cognitive, and emotional state of experimental animals. We have demonstrated the safety of the bicistronic plasmid, encoding hBDNF and huPA, upon its repeated administration. The properties of genetic constructs strongly depend on their sequence and delivery approach, which requires conducting of their safety studies in each specific case. Impact statement Gene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated. These aspects of gene therapy became the subject of this study. To our knowledge, this is a unique study that provides a thorough safety investigation of a bicistronic plasmid after its readministration.


Assuntos
DNA , Animais , Feminino , Camundongos , Plasmídeos/genética , Ratos , Distribuição Tecidual
6.
Cell Biosci ; 11(1): 64, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789753

RESUMO

Posttranscriptional gene regulation includes mRNA transport, localization, translation, and regulation of mRNA stability. CPEB (cytoplasmic polyadenylation element binding) family proteins bind to specific sites within the 3'-untranslated region and mediate poly- and deadenylation of transcripts, activating or repressing protein synthesis. As part of ribonucleoprotein complexes, the CPEB proteins participate in mRNA transport and localization to different sub-cellular compartments. The CPEB proteins are evolutionarily conserved and have similar functions in vertebrates and invertebrates. In the nervous system, the CPEB proteins are involved in cell division, neural development, learning, and memory. Here we consider the functional features of these proteins in the nervous system of phylogenetically distant organisms: Drosophila, a well-studied model, and mammals. Disruption of the CPEB proteins functioning is associated with various pathologies, such as autism spectrum disorder and brain cancer. At the same time, CPEB gene regulation can provide for a recovery of the brain function in patients with fragile X syndrome and Huntington's disease, making the CPEB genes promising targets for gene therapy.

7.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31904821

RESUMO

Early stages of transcription from eukaryotic promoters include two principal events: the capping of newly synthesized mRNA and the transition of RNA polymerase II from the preinitiation complex to the productive elongation state. The capping checkpoint model implies that these events are tightly coupled, which is necessary for ensuring the proper capping of newly synthesized mRNA. Recent findings also show that the capping machinery has a wider effect on transcription and the entire gene expression process. The molecular basis of these phenomena is discussed.


Assuntos
Modelos Genéticos , Capuzes de RNA/biossíntese , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Transcrição Gênica , Animais , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Capuzes de RNA/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Crit Rev Biochem Mol Biol ; 53(6): 579-595, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30280955

RESUMO

In most animal species, newly formed primordial germ cells (PGCs) acquire the special characteristics that distinguish them from the surrounding somatic cells. Proper fate specification of the PGCs is coupled with transcriptional quiescence, whether they are segregated by determinative or inductive mechanisms. Inappropriate differentiation of PGCs into somatic cells is thought to be prevented due to repression of RNA polymerase (Pol) II-dependent transcription. In the case of a determinative mode of PGC formation (Drosophila, Caenorhabditis elegans, etc.), there is a broad downregulation of Pol II activity. By contrast, PGCs display only gene-specific repression in organisms that rely on inductive signaling-based mechanism (e.g., mice). In addition to the global block of Pol II activity in PGCs, gene expression can be suppressed in other ways, such as chromatin remodeling and Piwi-mediated RNAi. Here, we discuss the mechanisms responsible for the transcriptionally silent state of PGCs in common experimental animals, such as Drosophila, C. elegans, Danio rerio, Xenopus, and mouse. While a PGC-specific downregulation of transcription is a common feature among these organisms, the diverse nature of underlying mechanisms suggests that this functional trait likely evolved independently on several instances. We discuss the possible biological relevance of these silencing mechanisms vis-a-vis fate determination of PGCs.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Células Germinativas/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica/fisiologia , Animais , Células Germinativas/citologia , Camundongos
9.
Cell Cycle ; 17(14): 1708-1720, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29995569

RESUMO

Paip2 (Poly(A)-binding protein - interacting protein 2) is a conserved metazoan-specific protein that has been implicated in regulating the translation and stability of mRNAs. However, we have found that Paip2 is not restricted to the cytoplasm but is also found in the nucleus in Drosophila embryos, salivary glands, testes, and tissue culture cells. Nuclear Paip2 is associated with chromatin, and in chromatin immunoprecipitation experiments it maps to the promoter regions of active genes. However, this chromatin association is indirect, as it is RNA-dependent. Thus, Paip2 is one more item in the growing list of translation factors that are recruited to mRNAs co-transcriptionally.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regiões Promotoras Genéticas , Animais , Linhagem Celular , Cromatina/metabolismo , Embrião não Mamífero/metabolismo , Masculino , Proteínas de Ligação a Poli(A) , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Testículo/metabolismo
10.
Toxins (Basel) ; 2(4): 632-48, 2010 04.
Artigo em Inglês | MEDLINE | ID: mdl-22069603

RESUMO

Multianalyte microphysiometry, a real-time instrument for simultaneous measurement of metabolic analytes in a microfluidic environment, was used to explore the effects of cholera toxin (CTx). Upon exposure of CTx to PC-12 cells, anaerobic respiration was triggered, measured as increases in acid and lactate production and a decrease in the oxygen uptake. We believe the responses observed are due to a CTx-induced activation of adenylate cyclase, increasing cAMP production and resulting in a switch to anaerobic respiration. Inhibitors (H-89, brefeldin A) and stimulators (forskolin) of cAMP were employed to modulate the CTx-induced cAMP responses. The results of this study show the utility of multianalyte microphysiometry to quantitatively determine the dynamic metabolic effects of toxins and affected pathways.


Assuntos
Toxina da Cólera/toxicidade , Metabolismo Energético/efeitos dos fármacos , Animais , AMP Cíclico/biossíntese , Ácido Láctico/metabolismo , Técnicas Analíticas Microfluídicas , Consumo de Oxigênio/efeitos dos fármacos , Células PC12 , Ratos
11.
Methods Mol Biol ; 303: 209-23, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15923686

RESUMO

A technique for simultaneously measuring changes in extracellular glucose, lactate, and oxygen concentrations in conjunction with acidification rates on a Cytosensor Microphysiometer is described. Platinum electrodes are inserted into the standard Cytosensor plunger head and modified with enzymes and biocompatible polymeric films. The lactate and glucose oxidase enzymes catalyze the reaction of lactate and glucose. An end product of these catalyses, H2O2, is measured amperometrically. Extracellular oxygen is also measured amperometrically, while the acidification rate is measured potentiometrically by the Cytosensor. Useful information is obtained during the Cytosensor stop-flow cycles, which produce increasing or decreasing peaks, owing to the production of lactic and carbonic acid and consumption of glucose and oxygen by the cells. Fabrication of the modified sensor head and deposition of the electrode films is detailed, and the operation of the technique is described and illustrated by the simultaneous measurement of all four analytes during the addition of 20 mM fluoride to mouse fibro blast cells.


Assuntos
Técnicas Biossensoriais/métodos , Animais , Técnicas Biossensoriais/instrumentação , Cricetinae , Enzimas Imobilizadas/química , Glucose/análise , Glucose Oxidase/química , Ácido Láctico/análise , Camundongos , Oxigenases de Função Mista/química , Oxigênio/análise
12.
Biomacromolecules ; 6(3): 1185-92, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15877332

RESUMO

A biocompatible, nanoparticulate formulation has been designed to retain, protect, and deliver adenoviral gene constructs over an extended time course. Such devices can be administered locally or systemically with low toxicity. A multipolymeric nanoparticulate system, featuring very high stability in physiologic media, was designed to allow efficient in vitro gene transfer. The efficacy of nanoparticulate delivery is effective in cell systems that are normally refractory to gene transfer, such as pancreatic islets and antigen-presenting cells. The findings suggest a nonspecific uptake system that permits adenoviral particle release within the transfected cells. A comparison with literature data revealed that our system is efficient at much lower levels (at least three orders of magnitude) of infectious viral particles.


Assuntos
Marcação de Genes/métodos , Técnicas de Transferência de Genes , Nanoestruturas , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Marcação de Genes/instrumentação , Técnicas de Transferência de Genes/instrumentação , Humanos , Ilhotas Pancreáticas/fisiologia , Leucócitos Mononucleares/fisiologia , Camundongos , Ratos
13.
Biomed Microdevices ; 6(4): 325-39, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15548879

RESUMO

There is a need for microminiaturized cell-culture environments, i.e. NanoLiter BioReactors (NBRs), for growing and maintaining populations of up to several hundred cultured mammalian cells in volumes three orders of magnitude smaller than those contained in standard multi-well screening plates. These devices would enable the development of a new class of miniature, automated cell-based bioanalysis arrays for monitoring the immediate environment of multiple cell lines and assessing the effects of drug or toxin exposure. We fabricated NBR prototypes, each of which incorporates a culture chamber, inlet and outlet ports, and connecting microfluidic conduits. The fluidic components were molded in polydimethylsiloxane (PDMS) using soft-lithography techniques, and sealed via plasma activation against a glass slide, which served as the primary culture substrate in the NBR. The input and outlet ports were punched into the PDMS block, and enabled the supply and withdrawal of culture medium into/from the culture chamber (10-100 nL volume), as well as cell seeding. Because of the intrinsically high oxygen permeability of the PDMS material, no additional CO(2)/air supply was necessary. The developmental process for the NBR typically employed several iterations of the following steps: Conceptual design, mask generation, photolithography, soft lithography, and proof-of-concept culture assay. We have arrived at several intermediate designs. One is termed "circular NBR with a central post (CP-NBR)," another, "perfusion (grid) NBR (PG-NBR)," and a third version, "multitrap (cage) NBR (MT-NBR)," the last two providing total cell retention. Three cells lines were tested in detail: a fibroblast cell line, CHO cells, and hepatocytes. Prior to the culturing trials, extensive biocompatibility tests were performed on all materials to be employed in the NBR design. To delineate the effect of cell seeding density on cell viability and survival, we conducted separate plating experiments using standard culture protocols in well-plate dishes. In both experiments, PicoGreen assays were used to evaluate the extent of cell growth achieved in 1-5 days following the seeding. Low seeding densities resulted in the absence of cell proliferation for some cell lines because of the deficiency of cell-cell and extracellular matrix (ECM)-cell contacts. High viabilities were achieved in all designs. We conclude that an instrumented microfluidics-based NanoBioReactor (NBR) will represent a dramatic departure from the standard culture environment. The employment of NBRs for mammalian cell culture opens a new paradigm of cell biology, so far largely neglected in the literature.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Citometria de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Dimetilpolisiloxanos/química , Desenho de Equipamento , Análise de Falha de Equipamento , Fibroblastos/citologia , Fibroblastos/fisiologia , Citometria de Fluxo/métodos , Hepatócitos/citologia , Hepatócitos/fisiologia , Hibridomas/citologia , Hibridomas/fisiologia , Camundongos , Técnicas Analíticas Microfluídicas/métodos , Miniaturização/métodos , Nanotecnologia/métodos , Silicones/química
14.
Anal Chem ; 76(3): 519-27, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14750842

RESUMO

A microphysiometer capable of measuring changes in extracellular glucose, lactate, oxygen, and acidification rate has been developed by incorporating modified electrodes into a standard Cytosensor Microphysiometer plunger. Glucose and lactate are measured indirectly at platinum electrodes by amperometric oxidation of hydrogen peroxide, which is produced from catalysis of glucose and lactate at films containing their respective entrapped oxidase. Oxygen is measured amperometrically at a platinum electrode coated with a Nafion film, while the acidification rate is measured potentiometrically by a Cytosensor Microphysiometer. Analytical information is obtained during the Cytosensor stop-flow cycles, where the electrodes measure changes in the extracellular medium corresponding to the consumption or production of the analyte by the cells. Modification of the Cytosensor plunger for multianalyte determination is described, and the operation of the technique is illustrated by the simultaneous measurement of all four analytes during the addition of fluoride and DNP to Chinese hamster ovary cells and fluoride and antimycin A to mouse fibroblast cells. Cell metabolic recovery and dynamics after exposure to agents can also be observed in specific cases.


Assuntos
Técnicas Biossensoriais/instrumentação , Glucose/análise , Ácido Láctico/análise , Oxigênio/análise , Animais , Técnicas Biossensoriais/normas , Células CHO , Cricetinae , Eletrodos , Espaço Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Platina/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...