Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(21): 7685-7694, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862602

RESUMO

In this study, the use of self-consistent field quasi-diabats is investigated for calculation of triplet energy transfer diabatic coupling elements. It is proposed that self-consistent field quasi-diabats are particularly useful for studying energy transfer (EnT) processes because orbital relaxation in response to changes in electron configuration is implicitly built into the model. The conceptual model that is developed allows for the simultaneous evaluation of direct and charge-transfer mechanisms to establish the importance of the different possible EnT mechanisms. The method's performance is evaluated using two model systems: the ethylene dimer and ethylene with the methaniminium cation. While states that mediate the charge-transfer mechanism were found to be higher in energy than the states involved in the direct mechanism, the coupling elements that control the kinetics were found to be significantly larger in the charge-transfer mechanism. Subsequently, we discuss the advantage of the approach in the context of practical difficulties with the use of established approaches.

2.
J Photochem Photobiol B ; 245: 112751, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37441852

RESUMO

CarH is a cobalamin-based photoreceptor which has attracted significant interest due to its complex mechanism involving its organometallic coenzyme-B12 chromophore. While several experimental and computational studies have sought to understand CarH's mechanism of action, there are still many aspects of the mechanism which remain unclear. While light is needed to activate the Co-C5' bond, it is not entirely clear whether reaction pathway involves singlet or triplet diradical states. A recent experimental study implicated triplet pathway and importance of intersystem crossing (ISC) as a viable mechanistic route for photoproduct formation in CarH. Herein, a combined quantum mechanics/molecular mechanics approach (QM/MM) was used to explore the involvement of triplet states in CarH. Two possibilities were explored. The first possibility involved photo-induced homolytic cleavage of the Co-C5' where the radical pair (RP) would deactivate to a triplet state (T0) on the ground state potential energy surface (PES). However, a pathway for the formation of the photoproduct, 4',5'-anhydroadenosine (anhAdo), on the triplet ground state PES was not energetically feasible. The second possibility involved exploring a manifold of low-lying triplet excited states computed using TD-DFT within the QM/MM framework. Viable crossings of triplet excited states with singlet excited states were identified using semiclassical Landau-Zener theory and the effectiveness of spin-orbit coupling by El-Sayed rules. Several candidates along both the Co-NIm potential energy curve (PEC) and Co-C5'/Co-NIm PES were identified, which appear to corroborate experimental findings and implicate the possible role of triplet states in CarH.


Assuntos
Teoria Quântica , Vitamina B 12 , Vitamina B 12/química
3.
Rev Sci Instrum ; 94(2): 023502, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858999

RESUMO

The goal of the Xflows experimental campaign is to study the radiation flow on the National Ignition Facility (NIF) reproducing the sensitivity of the temperature (±8 eV, ±23 µm) and density (±11 mg/cc) measurements of the COAX platform [Johns et al., High Energy Density Phys. 39, 100939 (2021); Fryer et al., High Energy Density Phys. 35, 100738 (2020); and Coffing et al., Phys. Plasmas 29, 083302 (2022)]. This new platform will enable future astrophysical experiments involving supernova shock breakout, such as Radishock (Johns et al., Laboratory for Laser Energetics Annual Report 338, 2020) on OMEGA-60 [Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)], and stochastic media (such as XFOL on OMEGA). Greater energy and larger physical scale on NIF [Moses et al., Eur. Phys. J. D 44, 215 (2007)] will enable a greater travel distance of radiation flow, higher density, and more manufacturable foams and enable exploration of a greater range of radiation behavior than achievable in the prior OMEGA experiments. This publication will describe the baseline configuration for the Xflows experimental campaign and the roadmap to achieve its primary objectives.

4.
Rev Sci Instrum ; 93(10): 103502, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319339

RESUMO

Mesoscale imperfections, such as pores and voids, can strongly modify the properties and the mechanical response of materials under extreme conditions. Tracking the material response and microstructure evolution during void collapse is crucial for understanding its performance. In particular, imperfections in the ablator materials, such as voids, can limit the efficiency of the fusion reaction and ultimately hinder ignition. To characterize how voids influence the response of materials during dynamic loading and seed hydrodynamic instabilities, we have developed a tailored fabrication procedure for designer targets with voids at specific locations. Our procedure uses SU-8 as a proxy for the ablator materials and hollow silica microspheres as a proxy for voids and pores. By using photolithography to design the targets' geometry, we demonstrate precise and highly reproducible placement of a single void within the sample, which is key for a detailed understanding of its behavior under shock compression. This fabrication technique will benefit high-repetition rate experiments at x-ray and laser facilities. Insight from shock compression experiments will provide benchmarks for the next generation of microphysics modeling.

5.
J Photochem Photobiol B ; 232: 112471, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35644067

RESUMO

The CarH photoreceptor exploits of the light-sensing ability of coenzyme B12 ( adenosylcobalamin = AdoCbl) to perform its catalytic function, which includes large-scale structural changes to regulate transcription. In daylight, transcription is activated in CarH via the photo-cleavage of the Co-C5' bond of coenzyme B12. Subsequently, the photoproduct, 4',5'-anhydroadenosine (anhAdo) is formed inducing dissociation of the CarH tetramer from DNA. Several experimental studies have proposed that hydridocoblamin (HCbl) may be formed in process with anhAdo. The photolytic cleavage of the Co-C5' bond of AdoCbl was previously investigated using photochemical techniques and the involvement of both singlet and triplet excited states were explored. Herein, QM/MM calculations were employed to probe (1) the photolytic processes which may involve singlet excited states, (2) the mechanism of anhAdo formation, and (3) whether HCbl is a viable intermediate in CarH. Time-dependent density functional theory (TD-DFT) calculations indicate that the mechanism of photodissociation of the Ado ligand involves the ligand field (LF) portion of the lowest singlet excited state (S1) potential energy surface (PES). This is followed by deactivation to a point on the S0 PES where the Co-C5' bond remains broken. This species corresponds to a singlet diradical intermediate. From this point, the PES for anhAdo formation was explored, using the Co-C5' and Co-C4' bond distances as active coordinates, and a local minimum representing anhAdo and HCbl formation was found. The transition state (TS) for the formation of the Co-H bond of HCbl was located and its identity was confirmed by a single imaginary frequency of i1592 cm-1. Comparisons to experimental studies and the potential role of rotation around the N-glycosidic bond of the Ado ligand were discussed.


Assuntos
Cobamidas , Cobamidas/química , Ligantes , Fosfotreonina/análogos & derivados
6.
Methods Enzymol ; 669: 119-150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644169

RESUMO

Nature employs two biologically active forms of vitamin B12, adenosylcobalamin (or coenzyme B12) and methylcobalamin, as cofactors in molecular transformations both in bacteria and mammals. Computational chemistry, guided by experimental data, has been used to explore fundamental characteristics of these enzymatic reactions. In particular, the quantum mechanics/molecular mechanics (QM/MM) method has proven to be a powerful tool in elucidating important characteristics of B12-dependent enzymatic reactions. Herein, we will present a brief tutorial in conducting QM/MM calculations for B12 enzymatic reactions. We will summarize recent contributions that target the use of QM/MM calculations in both photochemical and enzymatic reactions including AdoCbl-dependent ethanolamine ammonia lyase, glutamate mutase, and photoreceptor CarH.


Assuntos
Cobamidas , Biologia Computacional , Animais
7.
Inorg Chem ; 61(25): 9792-9800, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687329

RESUMO

In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pKa of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at -1.83 and -1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at -2.43 and -2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s-1 at an overpotential of 0.74 V for NiL1 and 8280 s-1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.


Assuntos
Hidrogênio , Níquel , Acetonitrilas , Ligantes , Níquel/química , Oxirredução
8.
Vitam Horm ; 119: 185-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337619

RESUMO

The biologically active vitamin B12 derivates, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are ubiquitous organometallic cofactors. In addition to their key roles in enzymatic catalysis, B12 cofactors have complex photolytic properties which have been the target of experimental and theoretical studies. With the recent discovery of B12-dependent photoreceptors, there is an increased need to elucidate the underlying photochemical mechanisms of these systems. This book chapter summarizes the photolytic properties of MeCbl- and AdoCbl-dependent enzymes with particular emphasis on the effect of the environment of the cofactor on the excited state processes. These systems include isolated MeCbl and AdoCbl as well as the enzymes, ethanolamine ammonia-lyase (EAL), glutamate mutase (GLM), methionine synthase (MetH), and photoreceptor CarH. Central to determining the photodissociation mechanism of each system is the analysis of the lowest singlet excited state (S1) potential energy surface (PES). Time-dependent density functional theory (TD-DFT), employing BP86/TZVPP, is widely used to construct such PESs. Regardless of the environment, the topology of the S1 PES of AdoCbl or MeCbl is marked by characteristic features, namely the metal-to-ligand charge transfer (MLCT) and ligand field (LF) regions. Conversely, the relative energetics of these electronic states are affected by the environment. Applications and outlooks for Cbl photochemistry are also discussed.


Assuntos
Vitamina B 12 , Humanos , Ligantes , Fotólise
9.
Phys Chem Chem Phys ; 24(10): 6093-6106, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212341

RESUMO

The photo-reactivity of cobalamins (Cbls) is influenced by the nature of axial ligands and the cofactor's environment. While the biologically active forms of Cbls with alkyl axial ligands, such as methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are considered to be photolytically active, in contrast, the non-alkyl Cbls are photostable. In addition to these, the photolytic properties of Cbls can also be modulated in the presence of molecular oxygen, i.e., under aerobic conditions. Herein, the photoreaction of the MeCbl in the presence of oxygen has been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT). The first stage of the aerobic photoreaction is the activation of the Co-C bond and the formation of the ligand field (LF) electronic state through the displacement of axial bonds. Once the photoreaction reaches the LF excited state, three processes can occur: namely the formation of OO-CH3 through the reaction of CH3 with molecular oxygen, de-activation of the {Im⋯[CoII(corrin)]⋯CH3}+ sub-system from the LF electronic state by changing the electronic configuration from (dyz)1(dz2)2 to (dyz)2(dz2)1 and the formation of the deactivation complex (DC) complex via the recombination of OO-CH3 species with the de-excited [CoII(corrin)] system. In the proposed mechanism, the deactivation of the [CoII(corrin)] subsystem may coexist with the formation of OO-CH3, followed by immediate relaxation of the subsystems in the ground state. Moreover, the formation of the OO-CH3 species followed by the formation of the {[CoIII(corrin)]-OO-CH3}+ complex stabilizes the system compared to the reactant complex.


Assuntos
Vitamina B 12 , Teoria da Densidade Funcional , Ligantes , Fotólise , Vitamina B 12/análogos & derivados , Vitamina B 12/química
10.
J Photochem Photobiol B ; 224: 112295, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34548209

RESUMO

Hydridocobalamin (HCbl), is a known member of the B12 family of molecules (cobalamins, Cbls) yet unlike other well-studied Cbls, little is known of the electronic and photolytic properties of this species. Interest in HCbl has increased significantly in recent years when at least three experimentally proposed mechanisms implicate HCbl as an intermediary in the photoreaction of coenzyme B12-dependent photoreceptor CarH. Specifically, cleavage of the Co-C5' bond of coenzyme B12 could lead to a ß-hydride or ß­hydrogen elimination reaction to form HCbl. HCbl is known to be a transient species where the oxidation state of the Co is variable; Co(I)-H+ ↔ Co(II)-H â†” Co(III)-H-. Further, HCbl is a very unstable with a pKa of ~1. This complicates experimental studies and to the best of our knowledge there are no available crystal structures of HCbl - either for the isolated molecule or bound to an enzyme. In this study, the electronic structure, photolytic properties, and reactivity of HCbl were explored to determine the preferred oxidation state as well as its potential role in the formation of the photoproduct in CarH. Natural bond orbital (NBO) analysis was performed to determine the oxidation state of Co in isolated HCbl. Based on the NBO analysis of HCbl, Co clearly had excess negative charge, which is in stark contrast to other alkylCbls where the Co ion is marked by significant positive charge. In sum, NBO results indicate that the CoH bond is strongly polarized and almost ionic. It can be described as protonated Co(I). In addition, DFT was used to explore the bond dissociation energy of HCbl based on homolytic cleavage of the CoH bond. TD-DFT calculations were used to compare computed electronic transitions to the experimentally determined absorption spectrum. The photoreaction of CarH was explored using an isolated model system and a pathway for hydrogen transfer was found. Finally, quantum mechanics/molecular mechanics (QM/MM) calculations were employed to investigate the formation of HCbl in CarH.


Assuntos
Elétrons , Vitamina B 12/análogos & derivados , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fotólise , Teoria Quântica , Vitamina B 12/química
11.
ChemSusChem ; 14(13): 2704-2709, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-33974355

RESUMO

A reversible Van der Waals complex formation between the electron-deficient fluorinated aromatic ring and N,N-dimethylformamide (DMF) molecules followed by light irradiation resulted in charge transfer (CT) process. The complex was stabilized by ammonium formate and further decomposed to form the C-N bond. Control experiments revealed that the simultaneous SN Ar pathway also contributes to product formation. This methodology is mild, metal-free, and effective for the amination of a variety of substrates. The reproducibility of this methodology was also verified on gram-scale reactions. The CT states were supported by control UV/Vis spectroscopy and computational studies.

12.
J Mol Graph Model ; 104: 107831, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529932

RESUMO

Methyl transfer reactions, mediated by methyltransferases (MeTrs), such as methionine synthase (MetH) or monomethylamine: CoM (MtmBC), constitute one of the most important classes of vitamin B12-dependent reactions. The challenge in exploring the catalytic function of MeTrs is related to their modular structure. From the crystallographic point of view, the structure of each subunit has been determined, but there is a lack of understanding of how each subunit interacts with each other. So far, theoretical studies of methyl group transfer were carried out for the structural models of the active site of each subunit. However, those studies do not include the effect of the enzymatic environment, which is crucial for a comprehensive understanding of enzyme-mediated methyl transfer reactions. Herein, to explore how two subunits interact with each other and how the methyl transfer reaction is catalyzed by MeTrs, molecular docking of the functional units of MetH and MtmBC was carried out. Along with the interactions of the functional units, the reaction coordinates, including the Co-C bond distance for methylation of cob(I)alamin (CoICbl) and the C-S bond distance in demethylation reaction of cob(III)alamin (CoIIICbl), were considered. The functional groups should be arranged so that there is an appropriate distance to transfer a methyl group and present results indicate that steric interactions can limit the number of potential arrangements. This calls into question the possibility of SN2-type mechanism previously proposed for MeTrs. Further, it leads to the conclusion that the methyl transfer reaction involves some spatial changes of modules suggesting an alternate radical-based pathway for MeTrs-mediated methyl transfer reactions. The calculations also showed that changes in torsion angles induce a change in reaction coordinates, namely Co-C and C-S bond distances, for the methylation and demethylation reactions catalyzed both by MetH and MtmBC.


Assuntos
Metiltransferases , Vitamina B 12 , Catálise , Metilação , Simulação de Acoplamento Molecular
13.
Inorg Chem ; 59(23): 17200-17212, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33211475

RESUMO

Vitamin B12 derivatives (Cbls = cobalamins) exhibit photolytic properties upon excitation with light. These properties can be modulated by several factors including the nature of the axial ligands. Upon excitation, homolytic cleavage of the organometallic bond to the upper axial ligand takes place in photolabile Cbls. The photosensitive nature of Cbls has made them potential candidates for light-activated drug delivery. The addition of a fluorophore to the nucleotide loop of thiolato Cbls has been shown to shift the region of photohomolysis to within the optical window of tissue (600-900 nm). With this possibility, there is a need to analyze photolytic properties of unique Cbls which contain a Co-S bond. Herein, the photodissociation of one such Cbl, namely, N-acetylcysteinylcobalamin (NACCbl), is analyzed based on density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The S0 and S1 potential energy surfaces (PESs), as a function of axial bond lengths, were computed to determine the mechanism of photodissociation. Like other Cbls, the S1 PES contains metal-to-ligand charge transfer (MLCT) and ligand field (LF) regions, but there are some unique differences. Interestingly, the S1 PES of NACCbl contains three distinct minima regions opening several possibilities for the mechanism of radical pair (RP) formation. The mild photoresponsiveness, observed experimentally, can be attributed to the small gap in energy between the S1 and S0 PESs. Compared to other Cbls, the gap shown for NACCbl is neither exactly in line with the alkyl Cbls nor the nonalkyl Cbls.


Assuntos
Cisteína/análogos & derivados , Teoria da Densidade Funcional , Luz , Compostos de Sulfidrila/química , Vitamina B 12/análogos & derivados , Cisteína/química , Ligantes , Conformação Molecular , Vitamina B 12/química
14.
J Photochem Photobiol B ; 209: 111919, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32615490

RESUMO

The discovery of naturally occurring B12-depedent photoreceptors has allowed for applications of cobalamins (Cbls) in optogenetics and synthetic biology to emerge. However, theoretical investigations of the complex mechanisms of these systems have been lacking. Adenosylcobalamin (AdoCbl)-dependent photoreceptor, CarH, is one example and it relies on daylight to perform its catalytic function. Typically, in enzymes employing AdoCbl as their cofactor, the Co-C5' bond activation and cleavage is triggered by substrate binding. The cleavage of the Co-C5' bond is homolytic resulting in radical pair formation. However, in CarH, this bond is instead activated by light. To explore this peculiarity, the ground and first excited state potential energy surfaces (PESs) were constructed using the quantum mechanics/molecular mechanics (QM/MM) framework and compared with other AdoCbl-dependent enzymes. QM/MM results indicate that CarH is photolytically active as a result of the AdoCbl dual role, acting as a radical generator and as a substrate. Photo-cleavage of the Co-C5' bond and subsequent H-atom abstraction is possible because of the specific orientation of the H-C4' bond with respect to the Co(II) center. Comparison with other AdoCbl-dependent enzymes indicate that the protein environment in the CarH active center alters the photochemistry of AdoCbl by controlling the stereochemistry of the ribose moiety.


Assuntos
Enzimas/metabolismo , Fotólise , Vitamina B 12/metabolismo , Simulação de Dinâmica Molecular , Fotoquímica , Teoria Quântica
15.
Dalton Trans ; 49(13): 4114-4124, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142090

RESUMO

Photolysis of methylcobalamin (MeCbl) in the presence of molecular oxygen (O2) has been investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT). The key step involves the formation of the Cbl-O-O-CH3 intermediate as a result of triplet O2 insertion in the Co-C bond in the presence of light. Analysis of low-lying excited states shows that the presence of light is only needed to activate the Co-C bond via the formation of the ligand field (LF) state. The insertion of O2, as well as the change in the spin state, takes place in the ground state. The analysis of the structural and electronic properties of the Cbl-O-O-CH3 intermediate is presented and possible decomposition also discussed.

16.
J Phys Chem B ; 124(1): 199-209, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31850761

RESUMO

Polarized X-ray absorption near-edge structure (XANES) at the Co K-edge and broadband UV-vis transient absorption are used to monitor the sequential evolution of the excited-state structure of coenzyme B12 (adenosylcobalamin) over the first picosecond following excitation. The initial state is characterized by sub-100 fs sequential changes around the central cobalt. These are polarized first in the y-direction orthogonal to the transition dipole and 50 fs later in the x-direction along the transition dipole. Expansion of the axial bonds follows on a ca. 200 fs time scale as the molecule moves out of the Franck-Condon active region of the potential energy surface. On the same 200 fs time scale there are electronic changes that result in the loss of stimulated emission and the appearance of a strong absorption at 340 nm. These measurements provide a cobalt-centered movie of the excited molecule as it evolves to the local excited-state minimum.


Assuntos
Cobamidas/química , Espectroscopia por Absorção de Raios X , Luz , Conformação Molecular , Teoria Quântica , Solventes/química , Raios Ultravioleta
17.
Phys Chem Chem Phys ; 21(37): 20628-20640, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31495862

RESUMO

Methionine synthase (MetH) is a methylcobalamin (MeCbl)-dependent mammalian enzyme which plays a critical role in carrying out the transfer of a methyl group from methyl tetrahydrofolate to homocysteine to generate methionine and tetrahydrofolate. This catalytic cycle proceeds via cleavage of a Co-C bond which is formally heterolytic. This cleavage results in a structural change in the MeCbl cofactor bound to an enzyme. Unlike the native catalysis, upon photoexcitation, the Co-C bond in MeCbl-bound MetH generates the Co(ii)/CH3 radical pairs (RPs). Protein residues of the cap domain, particularly phenylalanine708 (F708) and leucine 715 (L715), which surrounds the upper face of the MeCbl cofactor, inhibit the photolysis of MeCbl by caging the CH3 radical and inducing the geminate recombination of the Co(ii)/CH3 RP. A molecular-level understanding of these effects requires a detailed investigation of the low-lying electronic states. Toward this, we have mutated the F708 residue with alanine (A708) and constructed the potential energy surfaces (PESs) for the low-lying S1 electronic state using a combined quantum mechanics/molecular mechanics (QM/MM) approach. The S1 PESs for the wild-type (WT) and mutant enzymes are the result of crossing of two electronic states, namely metal-to-ligand charge transfer (MLCT) and ligand field (LF) states, indicated by a seam. It is shown that the topologies of the S1 PESs are significantly modulated by introducing a mutation at the F708 position. Specifically, for the WT enzyme, the energy barrier of photoreaction and the energy difference between MLCT and LF minima are markedly higher than those of its mutant counterpart. Moreover, mutation influences the photoactivation of the Co-C bond in enzyme-bound MeCbl by decreasing the rate of geminate recombination and altering the rate of radical pair formation. This theoretical insight was also compared with transient absorption spectroscopic (TAS) studies which are in good agreement with the present findings.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Carbono/química , Cobalto/química , Vitamina B 12/análogos & derivados , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Modelos Químicos , Estrutura Molecular , Mutação/genética , Fotólise , Domínios Proteicos/genética , Vitamina B 12/metabolismo
18.
Inorg Chem ; 58(19): 12986-12997, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31503487

RESUMO

The zinc(II) complex of diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazonepyridine), ZnL1 (1), was prepared and evaluated as a precatalyst for the hydrogen evolution reaction (HER) under homogeneous conditions in acetonitrile. Complex 1 is protonated on the noncoordinating nitrogen of the hydrazonepyridine moiety to yield the active catalyst Zn(HL1)OAc (2) upon addition of acetic acid. Addition of methyl iodide to 1 yields the corresponding methylated derivative ZnL2I (3). In solution, partial dissociation of the coordinated iodide yields the cationic derivative 3'. Complexes 1-3 were characterized by 1H NMR, FT-IR, and UV-visible spectroscopies. The solid-state structures of 2 and 3 were determined by single crystal X-ray diffraction. HER studies conducted in acetonitrile with acetic acid as the proton source yield a turnover frequency (TOF) of 7700 s-1 for solutions of 1 at an overpotential of 1.27 V and a TOF of 6700 s-1 for solutions of 3 at an overpotential of 0.56 V. For both complexes, the required potential for catalysis, Ecat/2, is larger than the thermodynamic reduction potential, E1/2, indicative of a kinetic barrier attributed to intramolecular proton rearrangement. The effect is larger for solutions of 1 (+440 mV) than for solutions of 3 (+160 mV). Controlled potential coulometry studies were used to determine faradaic efficiencies of 71 and 89% for solutions of 1 and 3, respectively. For both catalysts, extensive cycling of potential under catalytic conditions results in the deposition of a film on the glassy carbon electrode surface that is active as an HER catalyst. Analysis of the film of 3 by X-ray photoelectron spectroscopy indicates the complex remains intact upon deposition. A proposed ligand-centered HER mechanism with 1 as a precatalyst to 2 is supported computationally using density functional theory (DFT). All catalytic intermediates in the mechanism were structurally and energetically characterized with the DFT/B3LYP/6-311g(d,p) in solution phase using a polarizable continuum model (PCM). The thermodynamic feasibility of the mechanism is supported by calculation of equilibrium constants or reduction potentials for each proposed step.

19.
J Phys Chem B ; 123(28): 6042-6048, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31290669

RESUMO

We use picosecond time-resolved polarized X-ray absorption near-edge structure (XANES) measurements to probe the structure of the long-lived photoexcited state of methylcobalamin (MeCbl) and the cob(II)alamin photoproduct formed following photoexcitation of adenosylcobalamin (AdoCbl, coenzyme B12). For MeCbl, we used 520 nm excitation and a time delay of 100 ps to avoid the formation of cob(II)alamin. We find only small spectral changes in the equatorial and axial directions, which we interpret as arising from small (<∼0.05 Å) changes in both the equatorial and axial distances. This confirms expectations based on prior UV-visible transient absorption measurements and theoretical simulations. We do not find evidence for the significant elongation of the Co-C bond reported by Subramanian [ J. Phys. Chem. Lett. 2018 , 9 , 1542 - 1546 ] following 400 nm excitation. For AdoCbl, we resolve the difference XANES contributions along three unique molecular axes by exciting with both 540 and 365 nm light, demonstrating that the spectral changes are predominantly polarized along the axial direction, consistent with the loss of axial ligation. These data suggest that the microsecond "recombination product" identified by Subramanian et al. is actually the cob(II)alamin photoproduct that is produced following bond homolysis of MeCbl with 400 nm excitation. Our results highlight the pronounced advantage of using polarization-selective transient X-ray absorption for isolating structural dynamics in systems undergoing atomic displacements that are strongly correlated to the exciting optical polarization.

20.
J Phys Chem B ; 123(12): 2585-2598, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30767501

RESUMO

Glutamate mutase (GLM) is a coenzyme B12-dependent enzyme that catalyzes the conversion of S-glutamate to (2 S,3 S)-3-methyl aspartate. The initial step in the catalytic process is the homolytic cleavage of the coenzyme's Co-C bond upon binding of a substrate. Alternatively, the Co-C bond can be cleaved using light. To investigate the photolytic cleavage of the Co-C bond in GLM, we applied a combined density functional theory/molecular mechanics (DFT/MM) and time-dependent-DFT/MM method to scrutinize the ground and the low-lying excited states. Potential energy surfaces (PESs) were generated as a function of axial bond lengths to describe the photodissociation mechanism. The S1 PES was characterized as the crossing of two electronic states, metal-to-ligand charge transfer (MLCT), and ligand field (LF). In GLM, radical pairs generate from the LF state. Two pathways, path A and path B, were identified as possible channels to connect the MLCT and LF electronic states. The S1 PES in GLM was compared with the S1 PES for coenzyme B12-dependent ethanolamine ammonia lyase as well as the isolated AdoCbl cofactor. Finally, the theoretical insights related to the photodissociation mechanism were compared with transient absorption spectroscopy, electron paramagnetic resonance, and resonance Raman spectroscopy.


Assuntos
Carbono/química , Cobalto/química , Cobamidas/química , Transferases Intramoleculares/química , Carbono/efeitos da radiação , Clostridium/enzimologia , Cobalto/efeitos da radiação , Cobamidas/efeitos da radiação , Teoria da Densidade Funcional , Transferases Intramoleculares/efeitos da radiação , Luz , Modelos Químicos , Estrutura Molecular , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...