Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Genes Evol ; 232(5-6): 137-145, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372862

RESUMO

The core molecular mechanisms of dorsal organizer formation during gastrulation are highly conserved within the chordate lineage. One of the key characteristics is that Nodal signaling is required for the organizer-specific gene expression. This feature appears to be ancestral, as evidenced by the presence in the most basally divergent chordate amphioxus. To provide a better understanding of the evolution of organizer-specific gene regulation in chordates, we analyzed the cis-regulatory sequence of amphioxus Chordin in the context of the vertebrate embryo. First, we generated stable zebrafish transgenic lines, and by using light-sheet fluorescent microscopy, characterized in detail the expression pattern of GFP driven by the cis-regulatory sequences of amphioxus Chordin. Next, we performed a 5'deletion analysis and identified an enhancer sufficient to drive the expression of the reporter gene into a chordate dorsal organizer. Finally, we found that the identified enhancer element strongly depends on Nodal signaling, which is consistent with the well-established role of this pathway in the regulation of the expression of dorsal organizer-specific genes across chordates. The enhancer identified in our study may represent a suitable simple system to study the interplay of the evolutionarily conserved regulatory mechanisms operating during early chordate development.


Assuntos
Anfioxos , Animais , Anfioxos/genética , Anfioxos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Transformador beta/metabolismo , Expressão Gênica
2.
Front Cell Dev Biol ; 9: 702986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381783

RESUMO

Cephalochordates (amphioxi or lancelets) are representatives of the most basally divergent group of the chordate phylum. Studies of amphioxus development and anatomy hence provide a key insight into vertebrate evolution. More widespread use of amphioxus in the evo-devo field would be greatly facilitated by expanding the methodological toolbox available in this model system. For example, evo-devo research on amphioxus requires deep understanding of animal anatomy. Although conventional confocal microscopy can visualize transparent amphioxus embryos and early larvae, the imaging of later developmental stages is problematic because of the size and opaqueness of the animal. Here, we show that light sheet microscopy combined with tissue clearing methods enables exploration of large amphioxus specimens while keeping the surface and the internal structures intact. We took advantage of the phenomenon of autofluorescence of amphioxus larva to highlight anatomical details. In order to investigate molecular markers at the single-cell level, we performed antibody-based immunodetection of melanopsin and acetylated-α-tubulin to label rhabdomeric photoreceptors and the neuronal scaffold. Our approach that combines light sheet microscopy with the clearing protocol, autofluorescence properties of amphioxus, and antibody immunodetection allows visualizing anatomical structures and even individual cells in the 3D space of the entire animal body.

3.
Front Cell Dev Biol ; 8: 705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850825

RESUMO

The evolution of the vertebrate eye remains so far unresolved. Amphioxus frontal eye pigment cells and photoreceptors were proposed to be homologous to vertebrate photoreceptors and retinal pigmented epithelium, based on ultrastructural morphology and gene expression analysis in B. floridae. Here, we present comparative molecular data using two additional amphioxus species, a closely related B. lanceolatum, and the most divergent A. lucayanum. Taking advantage of a unique set of specific antibodies we characterized photoreceptors and putative interneurons of the frontal eye and investigated its neuronal circuitry. Our results corroborate generally conserved molecular fingerprint among cephalochordate species. Furthermore, we performed pharmacological perturbations and found that the Notch signaling pathway, a key regulator of retina development in vertebrates, is required for correct ratios among frontal eye cell types. In summary, our study provides a valuable insight into cell-type relationships in chordate visual organs and strengthens the previously proposed homology between amphioxus frontal eye and vertebrate eyes.

4.
Elife ; 92020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452768

RESUMO

Deciphering the mechanisms of axis formation in amphioxus is a key step to understanding the evolution of chordate body plan. The current view is that Nodal signaling is the only factor promoting the dorsal axis specification in the amphioxus, whereas Wnt/ß-catenin signaling plays no role in this process. Here, we re-examined the role of Wnt/ßcatenin signaling in the dorsal/ventral patterning of amphioxus embryo. We demonstrated that the spatial activity of Wnt/ß-catenin signaling is located in presumptive dorsal cells from cleavage to gastrula stage, and provided functional evidence that Wnt/ß-catenin signaling is necessary for the specification of dorsal cell fate in a stage-dependent manner. Microinjection of Wnt8 and Wnt11 mRNA induced ectopic dorsal axis in neurulae and larvae. Finally, we demonstrated that Nodal and Wnt/ß-catenin signaling cooperate to promote the dorsal-specific gene expression in amphioxus gastrula. Our study reveals high evolutionary conservation of dorsal organizer formation in the chordate lineage.


Assuntos
Anfioxos/embriologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Evolução Biológica , Proteína Goosecoid/metabolismo , Células HEK293 , Humanos , Anfioxos/metabolismo , Proteína Nodal/metabolismo , Proteína Smad2/metabolismo
5.
Nat Commun ; 10(1): 3857, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451684

RESUMO

Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Proteínas de Peixe-Zebra/genética , Animais , Embrião não Mamífero , Indução Embrionária/genética , Gastrulação/genética , Microscopia Intravital , Peixe-Zebra
6.
Methods Mol Biol ; 1891: 91-114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30414128

RESUMO

The BMP signaling pathway has been shown to be involved in different aspects of embryonic development across diverse metazoan phyla. Comparative studies on the roles of the BMP signaling pathway provide crucial insights into the evolution of the animal body plans. In this chapter, we present the general workflow on how to investigate the roles of BMP signaling pathway during amphioxus embryonic development. As amphioxus are basal invertebrate chordates, studies on the BMP signaling pathway in amphioxus could elucidate the functional evolution of BMP pathway in the chordate group. Here, we describe methods for animal husbandry, spawning induction, and manipulation of the BMP signaling pathway during embryonic development through drug inhibitors and recombinant proteins. We also introduce an efficient method of using mesh baskets to handle amphioxus embryos for fluorescence immunostaining and multicolor fluorescence in situ hybridization and to assay the effects of manipulating BMP signaling pathway during amphioxus embryogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Anfioxos/metabolismo , Modelos Biológicos , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/farmacologia , Embrião não Mamífero , Desenvolvimento Embrionário , Hibridização in Situ Fluorescente , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
7.
Nature ; 564(7734): 64-70, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30464347

RESUMO

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Assuntos
Regulação da Expressão Gênica , Genômica , Anfioxos/genética , Vertebrados/genética , Animais , Padronização Corporal/genética , Metilação de DNA , Humanos , Anfioxos/embriologia , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Transcriptoma/genética
8.
Int J Dev Biol ; 61(10-11-12): 601-610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29319109

RESUMO

How the embryonic body axis is generated is a fundamental question in developmental biology. The molecular mechanisms involved in this process have been the subject of intensive studies using traditional model organisms during the last few decades, and the results have provided crucial information for understanding the formation of animal body plans. In particular, studies exploring the molecular nature of Spemann's organizer have revealed the intricate interactions underlying several signaling pathways (namely the Wnt/ß-catenin, Nodal and Bmp pathways) that pattern the dorsoventral (DV) axis in vertebrate embryos. Furthermore, recent comparative studies have shown that many of these signaling interactions are also employed in other non-vertebrate model organisms for their early embryonic axis patterning. These results suggest that there is deep homology in DV patterning mechanisms among bilaterian animals and that these mechanisms may be traced back to the common ancestor of cnidarians and bilaterians. However, the mechanism by which the DV axis became inverted in the chordate lineage relative to the DV axis in other bilaterian animals remains unclear. Cephalochordata (i.e., amphioxus) represent a basal chordate group which occupies a key phylogenetic position for explorations of the origin of the chordate body plan. In this review, we summarize what is currently known regarding the developmental mechanisms that establish the DV axis in amphioxus embryos. By comparing this to what is known in vertebrates, we can start to hypothesize about the ancestral DV patterning mechanisms in chordates and discuss their possible evolutionary origins.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/genética , Transdução de Sinais/genética , Animais , Citoesqueleto/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Anfioxos/embriologia , Anfioxos/metabolismo
9.
Int J Dev Biol ; 61(10-11-12): 723-732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29319119

RESUMO

A cluster of three Specificity Protein (Sp) genes (Sp1-4, Sp5 and Sp6-9) is thought to be ancestral in both chordates and the wider Eumetazoa. Sp5 and Sp6-9 gene groups are associated with embryonic growth zones, such as tailbuds, and are both Wnt/ß-catenin signalling pathway members and targets. Currently, there are conflicting reports as to the number and identity of Sp genes in the cephalochordates, the sister group to the vertebrates and urochordates. We confirm the SP complement of Branchiostoma belcheri and Branchiostoma lanceolatum, as well as their genomic arrangement, protein domain structure and residue frequency. We assay Sp5 expression in B. lanceolatum embryos, and determine its response to pharmacologically increased ß-catenin signalling. Branchiostoma possesses three Sp genes, located on the same genomic scaffold. Phylogenetic and domain structure analyses are consistent with their identification as SP1-4, SP5 and SP6-9, although SP1-4 contains a novel glutamine-rich N-terminal region. SP5 is expressed in axial mesoderm and neurectoderm, and marks the cerebral vesicle and presumptive pharynx. Early exposure to increased ß-catenin caused ubiquitous SP5 expression in late gastrula, while later treatment at gastrula stages reduced SP5 expression in the posterior growth zone during axis elongation. Amphioxus possess a typical invertebrate eumetazoan SP complement, and SP5 expression in embryos is well conserved with vertebrate homologues. Its expression in the tailbud, a posterior growth zone, is consistent with expression seen in other bilaterians. Branchiostoma SP5 shows a dynamic response to Wnt/ß-catenin signalling.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/genética , Notocorda/metabolismo , Somitos/metabolismo , Via de Sinalização Wnt/genética , Animais , Cefalocordados/embriologia , Cefalocordados/genética , Anfioxos/embriologia , Notocorda/embriologia , Filogenia , Somitos/embriologia , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
10.
Int J Dev Biol ; 61(10-11-12): 763-772, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29319122

RESUMO

Light detection in animals is predominantly based on the photopigment composed of a protein moiety, the opsin, and the chromophore retinal. Animal opsins originated very early in metazoan evolution from within the G-Protein Coupled Receptor (GPCR) gene superfamily and diversified into several distinct branches prior to the cnidarian-bilaterian split. The origin of opsin diversity, opsin classification and interfamily relationships have been the matter of long-standing debate. Comparative studies of opsins from various Metazoa provide key insight into the evolutionary history of opsins and the visual perception in animals. Here, we have analyzed the genome assembly of the cephalochordate Branchiostoma lanceolatum, applying BLAST, gene prediction tools and manual curation in order to predict de novo its complete opsin repertoire. We investigated the structure of predicted opsin genes, encoded proteins, their phylogenetic placement, and expression. We identified a total of 22 opsin genes in B. lanceolatum, of which 21 are expressed and the remaining one appears to be a pseudogene. According to our phylogenetic analysis, representatives from the three major opsin groups, namely C-type, the R-type and the Group 4, can be identified in B. lanceolatum. Most of the B. lanceolatum opsins exhibit a stage-specific, but not a tissue-specific, expression pattern. The large number of opsins detected in B. lanceolatum, the observed similarities and differences in terms of sequence characteristics and expression patterns lead us to conclude that there may be a fine tuning in opsin utilization in order to facilitate visually-guided behavior of European amphioxus under various environmental settings.


Assuntos
Genômica/métodos , Anfioxos/genética , Família Multigênica , Opsinas/genética , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Opsinas/classificação , Células Fotorreceptoras/metabolismo , Filogenia
11.
Int J Dev Biol ; 61(10-11-12): 793-800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29319125

RESUMO

Cephalochordates, commonly called amphioxus or lancelets, are widely regarded as a useful proxy for the chordate ancestor. In recent decades, expression patterns of important developmental genes have been used extensively to infer homologies between cephalochordate and vertebrate embryos. Such comparisons provided important insight into cephalochordate biology and the origin of vertebrate traits. Most of the developmental expression data are collected using whole-mount in situ hybridization that allows the distributions of specific transcripts to be detected in fixed embryos. Here, we describe an experimental pipeline for production of small amounts of functional antibodies directed against amphioxus antigens for use in immunohistochemical labelling. In this pilot study, we generated antibodies against ß-catenin and the transcription factors FoxA, Lhx1, Lhx3 and Pax6. We demonstrate the usefulness of antibodies by performing immunostainings on fixed specimens of B. lanceolatum and B. floridae. We anticipate that amphioxus-specific antibodies will provide a useful tool for high-resolution labelling of individual cells within the embryo and for determining the subcellular localization of the corresponding proteins.


Assuntos
Anticorpos Monoclonais/imunologia , Embrião não Mamífero/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/imunologia , Animais , Especificidade de Anticorpos/imunologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Imuno-Histoquímica , Anfioxos/embriologia , Anfioxos/genética , Projetos Piloto , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , beta Catenina/genética , beta Catenina/imunologia
12.
PLoS Genet ; 12(12): e1006441, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27918583

RESUMO

Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction.


Assuntos
Olho/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cristalino/crescimento & desenvolvimento , Proteínas de Neoplasias/genética , Fator de Transcrição PAX6/genética , Animais , Sítios de Ligação , Ectoderma/crescimento & desenvolvimento , Ectoderma/patologia , Elementos Facilitadores Genéticos/genética , Olho/metabolismo , Olho/patologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Humanos , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Fator de Transcrição PAX6/metabolismo , Peixe-Zebra/genética
13.
Genome Biol Evol ; 8(8): 2387-405, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27412606

RESUMO

Cephalochordates, the sister group of vertebrates + tunicates, are evolving particularly slowly. Therefore, genome comparisons between two congeners of Branchiostoma revealed so many conserved noncoding elements (CNEs), that it was not clear how many are functional regulatory elements. To more effectively identify CNEs with potential regulatory functions, we compared noncoding sequences of genomes of the most phylogenetically distant cephalochordate genera, Asymmetron and Branchiostoma, which diverged approximately 120-160 million years ago. We found 113,070 noncoding elements conserved between the two species, amounting to 3.3% of the genome. The genomic distribution, target gene ontology, and enriched motifs of these CNEs all suggest that many of them are probably cis-regulatory elements. More than 90% of previously verified amphioxus regulatory elements were re-captured in this study. A search of the cephalochordate CNEs around 50 developmental genes in several vertebrate genomes revealed eight CNEs conserved between cephalochordates and vertebrates, indicating sequence conservation over >500 million years of divergence. The function of five CNEs was tested in reporter assays in zebrafish, and one was also tested in amphioxus. All five CNEs proved to be tissue-specific enhancers. Taken together, these findings indicate that even though Branchiostoma and Asymmetron are distantly related, as they are evolving slowly, comparisons between them are likely optimal for identifying most of their tissue-specific cis-regulatory elements laying the foundation for functional characterizations and a better understanding of the evolution of developmental regulation in cephalochordates.


Assuntos
Cefalocordados/genética , Sequência Conservada/genética , Evolução Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Cordados/genética , Genoma , Anfioxos/genética , Especificidade de Órgãos/genética , Filogenia
14.
Dev Genes Evol ; 226(2): 99-107, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26965282

RESUMO

The midbrain-hindbrain boundary (MHB) is one of the key organizing centers of the vertebrate central nervous system (CNS). Its patterning is governed by a well-described gene regulatory network (GRN) involving several transcription factors, namely, pax, gbx, en, and otx, together with signaling molecules of the Wnt and Fgf families. Here, we describe the onset of these markers in Oryzias latipes (medaka) early brain development in comparison to previously known zebrafish expression patterns. Moreover, we show for the first time that vox, a member of the vent gene family, is expressed in the developing neural tube similarly to CNS markers. Overexpression of vox leads to profound changes in the gene expression patterns of individual components of MHB-specific GRN, most notably of fgf8, a crucial organizer molecule of MHB. Our data suggest that genes from the vent family, in addition to their crucial role in body axis formation, may play a role in regionalization of vertebrate CNS.


Assuntos
Proteínas de Peixes/genética , Proteínas de Homeodomínio/genética , Oryzias/embriologia , Oryzias/genética , Animais , Embrião não Mamífero/metabolismo , Proteínas de Peixes/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Rombencéfalo/embriologia , Rombencéfalo/metabolismo
15.
Cell Rep ; 13(4): 812-828, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26489457

RESUMO

Axon guidance relies on precise translation of extracellular signal gradients into local changes in cytoskeletal dynamics, but the molecular mechanisms regulating dose-dependent responses of growth cones are still poorly understood. Here, we show that during embryonic development in growing axons, a low level of Semaphorin3A stimulation is buffered by the prolyl isomerase Pin1. We demonstrate that Pin1 stabilizes CDK5-phosphorylated CRMP2A, the major isoform of CRMP2 in distal axons. Consequently, Pin1 knockdown or knockout reduces CRMP2A levels specifically in distal axons and inhibits axon growth, which can be fully rescued by Pin1 or CRMP2A expression. Moreover, Pin1 knockdown or knockout increases sensitivity to Sema3A-induced growth cone collapse in vitro and in vivo, leading to developmental abnormalities in axon guidance. These results identify an important isoform-specific function and regulation of CRMP2A in controlling axon growth and uncover Pin1-catalyzed prolyl isomerization as a regulatory mechanism in axon guidance.


Assuntos
Axônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Imunoprecipitação , Masculino , Peptidilprolil Isomerase de Interação com NIMA , Proteínas do Tecido Nervoso/genética , Peptidilprolil Isomerase/genética , Fosforilação , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
Front Genet ; 6: 228, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191073

RESUMO

Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordates and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a) mRNA isoform. As shown in our analysis, this splicing event is characteristic of Gnathostomata and is absent in the other chordate subphyla. Moreover, expression pattern of alternative spliced variants was compared between cephalochordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.

18.
Sci Rep ; 5: 11885, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154478

RESUMO

Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.


Assuntos
Evolução Biológica , Cubomedusas/genética , Genoma , Opsinas/genética , Células Fotorreceptoras/metabolismo , Animais , Mapeamento Cromossômico , Cubomedusas/metabolismo , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Genômica/métodos , Família Multigênica , Opsinas/metabolismo , Filogenia , RNA Mensageiro/genética , Transdução de Sinais
19.
Mar Genomics ; 24 Pt 2: 159-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26094865

RESUMO

Cephalochordates, commonly known as amphioxus or lancelets, are the most basal subphylum of chordates. Cephalochordates are thus key to understanding the origin of vertebrates and molecular mechanisms underlying vertebrate evolution. The evolution of developmental control mechanisms during invertebrate-to-vertebrate transition involved not only gene duplication events, but also specific changes in spatial and temporal expression of many genes. To get insight into the spatiotemporal regulation of gene expression during invertebrate-to-vertebrate transition, functional studies of amphioxus gene regulatory elements are highly warranted. Here, we review transgenic studies performed in amphioxus and vertebrates using promoters and enhancers derived from the genome of Branchiostoma floridae. We describe the current methods of transgenesis in amphioxus, provide evidence of Tol2 transposon-generated transgenic embryos of Branchiostoma lanceolatum and discuss possible future directions. We envision that comparative transgenic analysis of gene regulatory sequences in the context of amphioxus and vertebrate embryos will likely provide an important mechanistic insight into the evolution of vertebrate body plan.


Assuntos
Regulação da Expressão Gênica/fisiologia , Anfioxos/genética , Anfioxos/fisiologia , Vertebrados/metabolismo , Animais , Animais Geneticamente Modificados , Evolução Biológica , Vertebrados/genética
20.
Dev Biol ; 382(2): 538-54, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23933491

RESUMO

In chordates, early separation of cell fate domains occurs prior to the final specification of ectoderm to neural and non-neural as well as mesoderm to dorsal and ventral during development. Maintaining such division with the establishment of an exact border between the domains is required for the formation of highly differentiated structures such as neural tube and notochord. We hypothesized that the key condition for efficient cell fate separation in a chordate embryo is the presence of a positive feedback loop for Bmp signaling within the gene regulatory network (GRN), underlying early axial patterning. Here, we therefore investigated the role of Bmp signaling in axial cell fate determination in amphioxus, the basal chordate possessing a centralized nervous system. Pharmacological inhibition of Bmp signaling induces dorsalization of amphioxus embryos and expansion of neural plate markers, which is consistent with an ancestral role of Bmp signaling in chordate axial patterning and neural plate formation. Furthermore, we provided evidence for the presence of the positive feedback loop within the Bmp signaling network of amphioxus. Using mRNA microinjections we found that, in contrast to vertebrate Vent genes, which promote the expression of Bmp4, amphioxus Vent1 is likely not responsible for activation of cephalochordate ortholog Bmp2/4. Cis-regulatory analysis of amphioxus Bmp2/4, Admp and Chordin promoters in medaka embryos revealed remarkable conservation of the gene regulatory information between vertebrates and basal chordates. Our data suggest that emergence of a positive feedback loop within the Bmp signaling network may represent a key molecular event in the evolutionary history of the chordate cell fate determination.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Anfioxos/embriologia , Transdução de Sinais , Animais , Padronização Corporal , Embrião não Mamífero/metabolismo , Retroalimentação Fisiológica , Anfioxos/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Oryzias/embriologia , Oryzias/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...