Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 171(7): 1617-28, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24283776

RESUMO

BACKGROUND AND PURPOSE: It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3 A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3 AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. EXPERIMENTAL APPROACH: Mutations were introduced into the portal region of the human 5-HT3 A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. KEY RESULTS: Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3 A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. CONCLUSIONS AND IMPLICATIONS: These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy.


Assuntos
Receptores 5-HT3 de Serotonina/metabolismo , Animais , Linhagem Celular , Simulação por Computador , Humanos , Potenciais da Membrana , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Receptores 5-HT3 de Serotonina/genética , Agonistas do Receptor 5-HT3 de Serotonina/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Transfecção , Xenopus laevis
2.
Neuropharmacology ; 73: 398-403, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23810831

RESUMO

The 5-HT3 receptor is a cation selective member of the pentameric Cys-loop ligand-gated ion channels. While five subunits are known to exist, only two receptor subtypes have been significantly characterized: the homomeric receptor consisting of five A subunits and the heteromeric receptor containing both A and B subunits. The agonist recognition and activation of these receptors is orchestrated by six recognition loops three, A-C, on the principal subunit, and three, D-F, on the complementary subunit. In this study we have focused on the B loop of the principal subunit and loop D of the complementary subunit where aligned amino acids differ between the two subunits. A mutational analysis has been carried out using both 5-HT and m-chlorophenylbiguanide (mCPBG) to characterize receptor activation in the mutant receptors using two-electrode voltage clamp in Xenopus oocytes. The results show that the B loop W178I mutation of the 5-HT3A subunit markedly reduces the efficacy of mCPBG in both the homomeric and heteromeric receptors, while activation by 5-HT remains intact. Replacement of the D loop amino acid triplet RQY of the 5-HT3A subunit, with the aligned residues from the 5-HT3B subunit, QEV, converts 5-HT to a weak partial agonist in both the homomer and heteromer, but does not compromise activation by mCPBG. Exchange of the RQY triplet for the 5-HT3B subunit homologue, QEV, increases the Hill coefficient and decreases the EC50 of this mutant when expressed with the wild type 5-HT3A subunit.


Assuntos
Biguanidas/farmacologia , Subunidades Proteicas/fisiologia , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Agonistas do Receptor 5-HT3 de Serotonina/farmacologia , Serotonina/farmacologia , Animais , Análise Mutacional de DNA , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Subunidades Proteicas/efeitos dos fármacos , Receptores 5-HT3 de Serotonina/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...