Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722338

RESUMO

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Testes de Neutralização , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Humanos , Testes de Neutralização/métodos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Animais , Concentração Inibidora 50 , Sensibilidade e Especificidade
2.
NPJ Vaccines ; 9(1): 20, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278816

RESUMO

In response to the COVID-19 pandemic, multiple vaccines were developed using platforms such as viral vectors and mRNA technology. Here, we report humoral and cellular immunogenicity data from human phase 1 clinical trials investigating two recombinant Modified Vaccinia virus Ankara vaccine candidates, MVA-SARS-2-S and MVA-SARS-2-ST, encoding the native and the prefusion-stabilized SARS-CoV-2 spike protein, respectively. MVA-SARS-2-ST was more immunogenic than MVA-SARS-2-S, but both were less immunogenic compared to licensed mRNA- and ChAd-based vaccines in SARS-CoV-2 naïve individuals. In heterologous vaccination, previous MVA-SARS-2-S vaccination enhanced T cell functionality and MVA-SARS-2-ST boosted the frequency of T cells and S1-specific IgG levels when used as a third vaccination. While the vaccine candidate containing the prefusion-stabilized spike elicited predominantly S1-specific responses, immunity to the candidate with the native spike was skewed towards S2-specific responses. These data demonstrate how the spike antigen conformation, using the same viral vector, directly affects vaccine immunogenicity in humans.

3.
Biomedicines ; 11(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001893

RESUMO

The successful development of effective viral vaccines depends on well-known correlates of protection, high immunogenicity, acceptable safety criteria, low reactogenicity, and well-designed immune monitoring and serology. Virus-neutralizing antibodies are often a good correlate of protective immunity, and their serum concentration is a key parameter during the pre-clinical and clinical testing of vaccine candidates. Viruses are inherently infectious and potentially harmful, but we and others developed replication-defective SARS-CoV-2 virus-like-particles (VLPs) as surrogates for infection to quantitate neutralizing antibodies with appropriate target cells using a split enzyme-based approach. Here, we show that SARS-CoV-2 and Epstein-Barr virus (EBV)-derived VLPs associate and fuse with extracellular vesicles in a highly specific manner, mediated by the respective viral fusion proteins and their corresponding host receptors. We highlight the capacity of virus-neutralizing antibodies to interfere with this interaction and demonstrate a potent application using this technology. To overcome the common limitations of most virus neutralization tests, we developed a quick in vitro diagnostic assay based on the fusion of SARS-CoV-2 VLPs with susceptible vesicles to quantitate neutralizing antibodies without the need for infectious viruses or living cells. We validated this method by testing a set of COVID-19 patient serum samples, correlated the results with those of a conventional test, and found good sensitivity and specificity. Furthermore, we demonstrate that this serological assay can be adapted to a human herpesvirus, EBV, and possibly other enveloped viruses.

4.
Mol Ther ; 31(2): 374-386, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36303436

RESUMO

Emerging and re-emerging viruses, such as Zaire Ebola virus (EBOV), pose a global threat and require immediate countermeasures, including the rapid development of effective vaccines that are easy to manufacture. Synthetic self-amplifying RNAs (saRNAs) attend to these needs, being safe and strong immune stimulators that can be inexpensively produced in large quantities, using cell-free systems and good manufacturing practice. Here, the first goal was to develop and optimize an anti-EBOV saRNA-based vaccine in terms of its antigen composition and route of administration. Vaccinating mice with saRNAs expressing the EBOV glycoprotein (GP) alone or in combination with the nucleoprotein (NP) elicited antigen-specific immune responses. GP-specific antibodies showed neutralizing activity against EBOV. Strong CD4+ T cell response against NP and GP and CD8+ T cell response against NP were detected by ELISpot assays. Intramuscular vaccination with saRNAs conferred better immune response than intradermal. Finally, mice vaccinated in a prime-boost regimen with saRNAs encoding both GP and NP or with GP alone survived an EBOV infection. In addition, a single dose of GP and NP saRNAs was also protective against fatal EBOV infection. Overall, saRNAs expressing viral antigens represent a promising vaccine platform.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Doença pelo Vírus Ebola/prevenção & controle , Anticorpos Antivirais , Anticorpos Neutralizantes , Ebolavirus/genética , Glicoproteínas/genética , Vacinas contra Ebola/genética
5.
PNAS Nexus ; 1(2)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36382127

RESUMO

Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive enzyme immunoassays or use viral vectors with the spike protein as the single structural component of SARS-CoV-2. To overcome these obstacles, we developed a virus-free, safe and very fast (4.5 h) in vitro diagnostic test based on engineered yet authentic SARS-CoV-2 virus-like-particles (VLPs). They share all features of the original SARS-CoV-2 but lack the viral RNA genome and thus are non-infectious. NAbs induced by infection or vaccination, but also potentially neutralizing monoclonal antibodies can be reliably quantified and assessed with ease and within hours with our test, because they interfere and block the ACE2-mediated uptake of VLPs by recipient cells. Results from the VLP neutralization test (VLPNT) showed excellent specificity and sensitivity and correlated very well with a cVNT using fully infectious SARS-CoV-2. The results also demonstrated the reduced neutralizing capacity of COVID-19 vaccinee sera against variants of concern of SARS-CoV-2 including omicron B.1.1.529, BA.1.

6.
Nat Commun ; 13(1): 4872, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982040

RESUMO

Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine. However, data comparing immunity decline after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. Here we show longitudinal monitoring of ChAd/ChAd (n = 41) and ChAd/BNT (n = 88) vaccinated individuals and the impact of a third vaccination with BNT. The third vaccination greatly augments waning anti-spike IgG but results in only moderate increase in spike-specific CD4 + and CD8 + T cell numbers in both groups, compared to cell frequencies already present after the second vaccination in the ChAd/BNT group. More importantly, the third vaccination efficiently restores neutralizing antibody responses against the Alpha, Beta, Gamma, and Delta variants of the virus, but neutralizing activity against the B.1.1.529 (Omicron) variant remains severely impaired. In summary, inferior SARS-CoV-2 specific immune responses following homologous ChAd/ChAd vaccination can be compensated by heterologous BNT vaccination, which might influence the choice of vaccine type for subsequent vaccination boosts.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
7.
Nat Commun ; 13(1): 4182, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853863

RESUMO

Vaccine development is essential for pandemic preparedness. We previously conducted a Phase 1 clinical trial of the vector vaccine candidate MVA-MERS-S against the Middle East respiratory syndrome coronavirus (MERS-CoV), expressing its full spike glycoprotein (MERS-CoV-S), as a homologous two-dose regimen (Days 0 and 28). Here, we evaluate the safety (primary objective) and immunogenicity (secondary and exploratory objectives: magnitude and characterization of vaccine-induced humoral responses) of a third vaccination with MVA-MERS-S in a subgroup of trial participants one year after primary immunization. MVA-MERS-S booster vaccination is safe and well-tolerated. Both binding and neutralizing anti-MERS-CoV antibody titers increase substantially in all participants and exceed maximum titers observed after primary immunization more than 10-fold. We identify four immunogenic IgG epitopes, located in the receptor-binding domain (RBD, n = 1) and the S2 subunit (n = 3) of MERS-CoV-S. The level of baseline anti-human coronavirus antibody titers does not impact the generation of anti-MERS-CoV antibody responses. Our data support the rationale of a booster vaccination with MVA-MERS-S and encourage further investigation in larger trials. Trial registration: Clinicaltrials.gov NCT03615911.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus , Vacinação
8.
Vaccines (Basel) ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35455282

RESUMO

The urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014-2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen. Here, we tested new vaccine candidates based on the recombinant MVA vector, encoding the EBOV nucleoprotein (MVA-EBOV-NP) or glycoprotein (MVA-EBOV-GP) for their efficacy after homologous prime-boost immunization in mice. Our aim was to investigate the role of each antigen in terms of efficacy and correlates of protection. Sera of mice vaccinated with MVA-EBOV-GP were virus-neutralizing and MVA-EBOV-NP immunization readily elicited interferon-γ-producing NP-specific CD8+ T cells. While mock-vaccinated mice succumbed to EBOV infection, all vaccinated mice survived and showed drastically decreased viral loads in sera and organs. In addition, MVA-EBOV-NP vaccinated mice became susceptible to lethal EBOV infection after depletion of CD8+ T cells prior to challenge. This study highlights the potential of MVA-based vaccines to elicit humoral immune responses as well as a strong and protective CD8+ T cell response and contributes to understanding the possible underlying mechanisms.

10.
Nat Microbiol ; 7(2): 195-199, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013593

RESUMO

Here we compared SARS-CoV-2-specific antibody and T-cell responses between older adults (>80 years old, n = 51) and a younger control group (20-53 years old, n = 46) after receiving two doses of BNT162b2. We found that responses in older adults were generally lower, and we identified 10% low-/non-responders. After receiving a third vaccination with BNT162b2, 4 out of 5 low-/non-responders showed antibody and T-cell responses similar to those of responders after two vaccinations.


Assuntos
Anticorpos Antivirais/sangue , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Vacina BNT162/administração & dosagem , COVID-19/imunologia , Humanos , Imunização Secundária/métodos , Imunização Secundária/estatística & dados numéricos , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Testes de Neutralização , Linfócitos T/imunologia , Adulto Jovem
11.
Viruses ; 15(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36680162

RESUMO

Ebola (EBOV) and Marburg virus (MARV) are highly pathogenic filoviruses that influence cellular signaling according to their own needs. MARV has been shown to regulate the IRE1α-dependent unfolded protein response (UPR) to ensure optimal virus replication. It was not known whether EBOV affects this signaling cascade, which can be beneficial or detrimental for viruses. Activation of IRE1α leads to the expression of the transcription factor XBP1s, which binds to cis-acting UPR elements (UPRE), resulting in the expression of genes aimed at restoring homeostasis in the endoplasmic reticulum. We observed that EBOV infection, in contrast to MARV infection, led to UPR activation by IRE1α-dependent but not ATF6-dependent signaling. We showed an activation of IRE1α, XBP1s and UPRE target genes upon EBOV infection. ATF6, another UPRE transcription factor, was not activated. UPRE activation was mainly attributed to the EBOV nucleoprotein NP and the soluble glycoprotein sGP. Finally, activation of UPR by thapsigargin, a potent ER-stress inducer, in parallel to infection as well as knock-out of XBP1 had no effect on EBOV growth, while MARV proliferation was affected by thapsigargin-dependent UPR activation. Taken together EBOV and MARV differ in their strategy of balancing IRE1α-dependent signaling for their own needs.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Humanos , Ebolavirus/genética , Ebolavirus/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Tapsigargina , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas
12.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452363

RESUMO

Despite the recent availability of vaccines against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there is an urgent need for specific anti-SARS-CoV-2 drugs. Monoclonal neutralizing antibodies are an important drug class in the global fight against the SARS-CoV-2 pandemic due to their ability to convey immediate protection and their potential to be used as both prophylactic and therapeutic drugs. Clinically used neutralizing antibodies against respiratory viruses are currently injected intravenously, which can lead to suboptimal pulmonary bioavailability and thus to a lower effectiveness. Here we describe DZIF-10c, a fully human monoclonal neutralizing antibody that binds the receptor-binding domain of the SARS-CoV-2 spike protein. DZIF-10c displays an exceptionally high neutralizing potency against SARS-CoV-2, retains full activity against the variant of concern (VOC) B.1.1.7 and still neutralizes the VOC B.1.351, although with reduced potency. Importantly, not only systemic but also intranasal application of DZIF-10c abolished the presence of infectious particles in the lungs of SARS-CoV-2 infected mice and mitigated lung pathology when administered prophylactically. Along with a favorable pharmacokinetic profile, these results highlight DZIF-10c as a novel human SARS-CoV-2 neutralizing antibody with high in vitro and in vivo antiviral potency. The successful intranasal application of DZIF-10c paves the way for clinical trials investigating topical delivery of anti-SARS-CoV-2 antibodies.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Administração Intranasal , Animais , COVID-19/virologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia
13.
iScience ; 24(4): 102266, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817572

RESUMO

Ebola virus (EBOV) is responsible for outbreaks with case fatality rates of up to 90% and for an epidemic in West Africa with more than ten thousand deaths. EBOV glycoprotein (EBOV-GP) is the only viral surface protein and is responsible for viral entry into cells. Here, by employing pseudotyped EBOV-GP viral particles, we uncover a critical role for sphingolipids in inhibiting viral entry. Sphingosine kinase 1 (SphK1) catalyzes the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). The administration of the SphK1 activator, K6PC-5, or S1P, or the overexpression of SphK1 consistently exhibited striking inhibitory effects in EBOV-GP-driven entry in diverse cell lines. Finally, K6PC-5 markedly reduced the EBOV titer in infected cells and the de novo production of viral proteins. These data present K6PC-5 as an efficient tool to inhibit EBOV infection in endothelial cells and suggest further studies to evaluate its systemic effects.

14.
Bioinformatics ; 37(16): 2282-2288, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33560365

RESUMO

MOTIVATION: SARS-CoV-2 is a novel coronavirus currently causing a pandemic. Here, we performed a combined in-silico and cell culture comparison of SARS-CoV-2 and the closely related SARS-CoV. RESULTS: Many amino acid positions are differentially conserved between SARS-CoV-2 and SARS-CoV, which reflects the discrepancies in virus behaviour, i.e. more effective human-to-human transmission of SARS-CoV-2 and higher mortality associated with SARS-CoV. Variations in the S protein (mediates virus entry) were associated with differences in its interaction with ACE2 (cellular S receptor) and sensitivity to TMPRSS2 (enables virus entry via S cleavage) inhibition. Anti-ACE2 antibodies more strongly inhibited SARS-CoV than SARS-CoV-2 infection, probably due to a stronger SARS-CoV-2 S-ACE2 affinity relative to SARS-CoV S. Moreover, SARS-CoV-2 and SARS-CoV displayed differences in cell tropism. Cellular ACE2 and TMPRSS2 levels did not indicate susceptibility to SARS-CoV-2. In conclusion, we identified genomic variation between SARS-CoV-2 and SARS-CoV that may reflect the differences in their clinical and biological behaviour. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

15.
J Immunol Methods ; 490: 112958, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412174

RESUMO

The current Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic is a public health emergency of international concern. Sensitive and precise diagnostic tools are urgently needed. In this study, we developed a SARS-CoV-2 spike (S1) protein enzyme-linked immunosorbent assay (ELISA) to detect SARS-CoV-2-specific antibodies. The SARS-CoV-2 S1 ELISA was found to be specific [97.8% (95% CI, 96.7% - 98.5%)], reproducible and precise (intra-assay coefficient of variability (CV) 5.3%, inter-assay CV 7.9%). A standard curve and the interpolation of arbitrary ELISA units per milliliter served to reduce the variability between different tests and operators. Cross-reactivity to other human coronaviruses was addressed by using sera positive for MERS-CoV- and hCoV HKU1-specific antibodies. Monitoring antibody development in various samples of twenty-three and single samples of twenty-nine coronavirus disease 2019 (COVID-19) patients revealed seroconversion and neutralizing antibodies against authentic SARS-CoV-2 in all cases. The comparison of the SARS-CoV-2 (S1) ELISA with a commercially available assay showed a better sensitivity for the in-house ELISA. The results demonstrate a high reproducibility, specificity and sensitivity of the newly developed ELISA, which is suitable for the detection of SARS-CoV-2 S1 protein-specific antibody responses.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Células Epiteliais/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Chlorocebus aethiops , Ensaios Enzimáticos , Ensaio de Imunoadsorção Enzimática , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Soroconversão , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
16.
Lancet Infect Dis ; 21(4): 507-516, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33065039

RESUMO

BACKGROUND: The 2013-16 Ebola virus disease epidemic in west Africa caused international alarm due to its rapid and extensive spread resulting in a significant death toll and social unrest within the affected region. The large number of cases provided an opportunity to study the long-term kinetics of Zaire ebolavirus-specific immune response of survivors in addition to known contacts of those infected with the virus. METHODS: In this observational cohort study, we worked with leaders of Ebola virus disease survivor associations in two regions of Guinea, Guéckédou and Coyah, to recruit survivors of Ebola virus disease, contacts from households of individuals known to have had Ebola virus disease, and individuals who were not knowingly associated with infected individuals or had not had Ebola virus disease symptoms to serve as negative controls. We did Zaire ebolavirus glycoprotein-specific T cell analysis on peripheral blood mononuclear cells (PBMCs) on location in Guinea and transported plasma and PBMCs back to Europe for antibody quantification by ELISA, functional neutralising antibody analysis using live Zaire ebolavirus, and T cell phenotype studies. We report on the longitudinal cellular and humoral response among Ebola virus disease survivors and highlight potentially paucisymptomatic infection. FINDINGS: We recruited 117 survivors of Ebola virus disease, 66 contacts, and 23 negative controls. The mean neutralising antibody titre among the Ebola virus disease survivors 3-14 months after infection was 1/174 (95% CI 1/136-1/223). Individual results varied greatly from 1/10 to more than 1/1000 but were on average ten times greater than that induced after 1 month by single dose Ebola virus vaccines. Following reactivation with glycoprotein peptide, the mean T cell responses among 116 Ebola virus disease survivors as measured by ELISpot was 305 spot-forming units (95% CI 257-353). The dominant CD8+ polyfunctional T cell phenotype, as measured among 53 Ebola virus disease survivors, was interferon γ+, tumour necrosis factor+, interleukin-2-, and the mean response was 0·046% of total CD8+ T cells (95% CI 0·021-0·071). Additionally, both neutralising antibody and T cell responses were detected in six (9%) of 66 Ebola virus disease contacts. We also noted that four (3%) of 117 individuals with Ebola virus disease infections did not have circulating Ebola virus-specific antibodies 3 months after infection. INTERPRETATION: The continuous high titre of neutralising antibodies and increased T cell response might support the concept of long-term protective immunity in survivors. The existence of antibody and T cell responses in contacts of individuals with Ebola virus disease adds further evidence to the existence of sub-clinical Ebola virus infection. FUNDING: US Food & Drug Administration, Horizon 2020 EU EVIDENT, Wellcome, UK Department for International Development. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Anticorpos Antivirais/sangue , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes/estatística & dados numéricos , Linfócitos T/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Criança , Pré-Escolar , Ebolavirus/patogenicidade , Epidemias , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Imunidade Celular , Imunidade Humoral , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
18.
NPJ Vaccines ; 5(1): 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802410

RESUMO

Lassa mammarenavirus (LASV) is a rodent-borne arenavirus endemic to several West African countries. It is the causative agent of human Lassa fever, an acute viral hemorrhagic fever disease. To date, no therapeutics or vaccines against LASV have obtained regulatory approval. Polyclonal neutralizing antibodies derived from hyperimmunized animals may offer a useful strategy for prophylactic and therapeutic intervention to combat human LASV infections. The LASV envelope surface glycoprotein complex (GP) is the major target for neutralizing antibodies, and it is the main viral antigen used for the design of an LASV vaccine. Here, we assessed the immunogenic potential of mammalian cell-derived virus-like particles (VLPs) expressing GP from the prototypic LASV strain Josiah in a native-like conformation as the sole viral antigen. We demonstrate that an adjuvanted prime-boost immunization regimen with GP-derived VLPs elicited neutralizing antibody responses in rabbits, suggesting that effective antigenic epitopes of GP were displayed. Notably, these antibodies exhibited broad reactivity across five genetic lineages of LASV. VLP-based immunization strategies may represent a powerful approach for generating polyclonal sera containing cross-reactive neutralizing antibodies against LASV.

19.
Cell ; 182(4): 843-854.e12, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32673567

RESUMO

The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and the world economy. Because approved drugs and vaccines are limited or not available, new options for COVID-19 treatment and prevention are in high demand. To identify SARS-CoV-2-neutralizing antibodies, we analyzed the antibody response of 12 COVID-19 patients from 8 to 69 days after diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days after diagnosis. Of these, 28 potently neutralized authentic SARS-CoV-2 with IC100 as low as 0.04 µg/mL, showing a broad spectrum of variable (V) genes and low levels of somatic mutations. Interestingly, potential precursor sequences were identified in naive B cell repertoires from 48 healthy individuals who were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2-neutralizing antibodies are readily generated from a diverse pool of precursors, fostering hope for rapid induction of a protective immune response upon vaccination.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Betacoronavirus/imunologia , COVID-19 , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Memória Imunológica , Estudos Longitudinais , Pandemias , SARS-CoV-2 , Hipermutação Somática de Imunoglobulina
20.
Biotechnol J ; 15(9): e2000069, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32463974

RESUMO

The Ebola virus (EBOV) can cause severe infections in humans, leading to a fatal outcome in a high percentage of cases. Neutralizing antibodies against the EBOV surface glycoprotein (GP) can prevent infections, demonstrating a straightforward way for an efficient vaccination strategy. Meanwhile, many different anti-EBOV antibodies have been identified, whereas the exact binding epitopes are often unknown. Here, the analysis of serum samples from an EBOV vaccine trial with the recombinant vesicular stomatitis virus-Zaire ebolavirus (rVSV-ZEBOV) and an Ebola virus disease survivor, using high-density peptide arrays, is presented. In this proof-of-principle study, distinct IgG and IgM antibodies binding to different epitopes of EBOV GP is detected: By mapping the whole GP as overlapping peptide fragments, new epitopes and confirmed epitopes from the literature are found. Furthermore, the highly selective binding epitope of a neutralizing monoclonal anti-EBOV GP antibody could be validated. This shows that peptide arrays can be a valuable tool to study the humoral immune response to vaccines in patients and to support Ebola vaccine development.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Aminoácidos , Anticorpos Antivirais , Ebolavirus/imunologia , Epitopos , Glicoproteínas , Doença pelo Vírus Ebola/prevenção & controle , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...