Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemistryOpen ; 10(5): 534-544, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33656808

RESUMO

The chemistry of urethanes plays a key role in important industrial processes. Although catalysts are often used, the study of the reactions without added catalysts provides the basis for a deeper understanding. For the non-catalytic urethane formation and cleavage reactions, the dominating reaction mechanism has long been debated. To our knowledge, the reaction kinetics have not been predicted quantitatively so far. Therefore, we report a new computational study of urethane formation and cleavage reactions. To analyze various potential reaction mechanisms and to predict the reaction rate constants quantum chemistry and transition state theory were employed. For validation, experimental data from literature and from own experiments were used. Quantitative agreement of experiments and predictions could be demonstrated. The calculations confirm earlier assumptions that urethane formation reactions proceed via mechanisms where alcohol molecules act as auto-catalysts. Our results show that it is essential to consider several transition states corresponding to different reaction orders to enable agreement with experimental observations. Urethane cleavage seems to be catalyzed by an isourethane, leading to an observed 2nd-order dependence of the reaction rate on the urethane concentration. The results of our study support a deeper understanding of the reactions as well as a better description of reaction kinetics and will therefore help in catalyst development and process optimization.

2.
J Chem Phys ; 152(16): 164303, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32357787

RESUMO

The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.

3.
J Phys Chem A ; 124(20): 4171-4181, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32336096

RESUMO

The prediction of solvation free energies is essential for a variety of applications. Solvation free energies of neutral systems can be predicted quite accurately. The accuracy of predictions for solvation free energies of ionic solutes dissolved in neutral solvents, however, has been reported to be worse by at least 1 order of magnitude. In this study, the performance of three approaches for solvation free energy prediction of several hundred ions dissolved in neutral solvents is evaluated. The applied methods are COSMO-RS, cluster continuum model (CCM) together with COSMO-RS, and COSMO-RS-ES. It is emphasized that the reference data for model evaluation are subject to large uncertainties stemming from the impossibility to measure the so-called elusive absolute free energies of solvation of a single ion. Consequently, such uncertainty must be considered during the evaluation of prediction methods. Therefore, a straightforward approach to account for the underlying uncertainty is applied here. Hereby, it is revealed that the true performance of the method is better than what is often reported. The average absolute deviation (AAD) of COSMO-RS is calculated to be 2.3 kcal mol-1, while applying the CCM and COSMO-RS-ES each results in AADs of 2.0 kcal mol-1. This accuracy allows for qualitative assessment of solvation free energy-dependent quantities, such as reaction rate constants.

4.
ACS Omega ; 5(5): 2242-2253, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32064385

RESUMO

Anharmonicity can greatly affect rate constants. One or even several orders of magnitude of deviation are found for obtaining rate constants using the standard rigid-rotor harmonic-oscillator model. In turn, reactive molecular dynamics (MD) simulations are a powerful way to explore chemical reaction networks and calculate rate constants from the fully anharmonic potential energy surface. However, the classical nature of the dynamics and the required numerical efficiency of the force field limit the accuracy of the resulting kinetics. We combine the best of both worlds by presenting an approximation that pairs anharmonic information intrinsic to classical MD with high-accuracy energies and frequencies from quantum-mechanical electronic structure calculations. The proposed scheme is applied to hydrogen abstractions in the methane system, which allows for the benchmarking of rate constants corrected by our approach against experimental rate constants. This comparison reveals a standard deviation of factor 2.6. Two archetypes of possible failure are identified in the course of a detailed investigation of the CH3 • + H• → CH2 2• + H2 reaction. From this follows the application range of the method, within which the method shows a standard deviation of factor 2.1. The computational efficiency and beneficial scaling of the method allow for application to larger systems, as shown for hydrogen abstraction from 2-butanone by HO2 •.

5.
J Chem Inf Model ; 58(7): 1343-1355, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29898359

RESUMO

An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable, and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready to use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodological advancement of chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Hidrogênio/química , Cinética , Metano/química , Oxirredução , Teoria Quântica , Temperatura , Termodinâmica
6.
J Chem Phys ; 148(1): 014301, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29306273

RESUMO

Herein we present the results of a blind challenge to quantum chemical methods in the calculation of dimerization preferences in the low temperature gas phase. The target of study was the first step of the microsolvation of furan, 2-methylfuran and 2,5-dimethylfuran with methanol. The dimers were investigated through IR spectroscopy of a supersonic jet expansion. From the measured bands, it was possible to identify a persistent hydrogen bonding OH-O motif in the predominant species. From the presence of another band, which can be attributed to an OH-π interaction, we were able to assert that the energy gap between the two types of dimers should be less than or close to 1 kJ/mol across the series. These values served as a first evaluation ruler for the 12 entries featured in the challenge. A tentative stricter evaluation of the challenge results is also carried out, combining theoretical and experimental results in order to define a smaller error bar. The process was carried out in a double-blind fashion, with both theory and experimental groups unaware of the results on the other side, with the exception of the 2,5-dimethylfuran system which was featured in an earlier publication.

7.
J Chem Theory Comput ; 13(9): 3955-3960, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28753283

RESUMO

Reactive molecular dynamics (MD) simulations are a versatile tool which allow for studying reaction pathways and rates simultaneously. However, most reactions will be observed only a few times in such a simulation due to computational limitations or slow kinetics, and it is unclear how this will influence the obtained rate constants. Therefore, we propose a method based on the Poisson distribution to assess the statistical uncertainty of reaction rate constants obtained from reactive MD simulations.

8.
J Phys Chem B ; 121(13): 2887-2895, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28287724

RESUMO

Microgels have a wide range of possible applications and are therefore studied with increasing interest. Nonetheless, the microgel synthesis process and some of the resulting properties of the microgels, such as the cross-linker distribution within the microgels, are not yet fully understood. An in-depth understanding of the synthesis process is crucial for designing tailored microgels with desired properties. In this work, rate constants and reaction enthalpies of chain propagation reactions in aqueous N-isopropylacrylamide/N,N'-methylenebisacrylamide and aqueous N-vinylcaprolactam/N,N'-methylenebisacrylamide systems are calculated to identify the possible sources of an inhomogeneous cross-linker distribution in the resulting microgels. Gas-phase reaction rate constants are calculated from B2PLYPD3/aug-cc-pVTZ energies and B3LYPD3/tzvp geometries and frequencies. Then, solvation effects based on COSMO-RS are incorporated into the rate constants to obtain the desired liquid-phase reaction rate constants. The rate constants agree with experiments within a factor of 2-10, and the reaction enthalpies deviate less than 5 kJ/mol. Further, the effect of rate constants on the microgel growth process is analyzed, and it is shown that differences in the magnitude of the reaction rate constants are a source of an inhomogeneous cross-linker distribution within the resulting microgel.

9.
J Chem Theory Comput ; 11(6): 2517-24, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26575551

RESUMO

We provide a methodology for deducing quantitative reaction models from reactive molecular dynamics simulations by identifying, quantifying, and evaluating elementary reactions of classical trajectories. Simulations of the inception stage of methane oxidation are used to demonstrate our methodology. The agreement of pathways and rates with available literature data reveals the potential of reactive molecular dynamics studies for developing quantitative reaction models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...