Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Blood ; 143(15): 1438-1439, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602697
2.
Hemasphere ; 8(1): e32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38434534

RESUMO

Multiple myeloma (MM) is a heterogeneous malignancy of plasma cells. Despite improvement in the prognosis of MM patients after the introduction of many new drugs in the past decades, MM remains incurable since most patients become treatment-resistant. Cyclin-dependent kinase 6 (CDK6) is activated in many types of cancer and has been associated with drug resistance in MM. However, its association with disease stage, genetic alterations, and outcome has not been systematically investigated in large cohorts. Here, we analyzed CDK6 expression using immunohistochemistry in 203 formalin-fixed paraffin-embedded samples of 146 patients and four healthy individuals. We found that 61.5% of all MM specimens express CDK6 at various levels. CDK6 expression increased with the progression of disease with a median of 0% of CDK6-positive plasma cells in monoclonal gammopathy of undetermined significance (MGUS) (n = 10) to 30% in newly diagnosed MM (n = 78) and up to 70% in relapsed cases (n = 55). The highest median CDK6 was observed in extramedullary myeloma (n = 12), a highly aggressive manifestation of MM. Longitudinal analyses revealed that CDK6 is significantly increased in lenalidomide-treated patients but not in those who did not receive lenalidomide. Furthermore, we observed that patients who underwent lenalidomide-comprising induction therapy had significantly shorter progression-free survival when their samples were CDK6 positive. These data support that CDK6 protein expression is a marker for aggressive and drug-resistant disease and describes a potential drug target in MM.

3.
Nat Commun ; 14(1): 8437, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114468

RESUMO

Thalidomide and its analogs are molecular glues (MGs) that lead to targeted ubiquitination and degradation of key cancer proteins via the cereblon (CRBN) E3 ligase. Here, we develop a direct-to-biology (D2B) approach for accelerated discovery of MGs. In this platform, automated, high throughput, and nano scale synthesis of hundreds of pomalidomide-based MGs was combined with rapid phenotypic screening, enabling an unprecedented fast identification of potent CRBN-acting MGs. The small molecules were further validated by degradation profiling and anti-cancer activity. This revealed E14 as a potent MG degrader targeting IKZF1/3, GSPT1 and 2 with profound effects on a panel of cancer cells. In a more generalized view, integration of automated, nanoscale synthesis with phenotypic assays has the potential to accelerate MGs discovery.


Assuntos
Peptídeo Hidrolases , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Proteólise , Biologia
4.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815874

RESUMO

Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Memória Imunológica , COVID-19/prevenção & controle , Tecido Linfoide , Vacinação , RNA Mensageiro , Anticorpos Antivirais
5.
J Med Chem ; 66(21): 14513-14543, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37902300

RESUMO

Immunomodulatory imide drugs (IMiDs) such as thalidomide, pomalidomide, and lenalidomide are the most common cereblon (CRBN) recruiters in proteolysis-targeting chimera (PROTAC) design. However, these CRBN ligands induce the degradation of IMiD neosubstrates and are inherently unstable, degrading hydrolytically under moderate conditions. In this work, we simultaneously optimized physiochemical properties, stability, on-target affinity, and off-target neosubstrate modulation features to develop novel nonphthalimide CRBN binders. These efforts led to the discovery of conformationally locked benzamide-type derivatives that replicate the interactions of the natural CRBN degron, exhibit enhanced chemical stability, and display a favorable selectivity profile in terms of neosubstrate recruitment. The utility of the most potent ligands was demonstrated by their transformation into potent degraders of BRD4 and HDAC6 that outperform previously described reference PROTACs. Together with their significantly decreased neomorphic ligase activity on IKZF1/3 and SALL4, these ligands provide opportunities for the design of highly selective and potent chemically inert proximity-inducing compounds.


Assuntos
Quimera de Direcionamento de Proteólise , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ligantes , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
RSC Chem Biol ; 4(3): 229-234, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908700

RESUMO

The Petasis borono-Mannich reaction was employed for an alternative entry towards three-branched cereblon ligands. Such compounds are capabable of making multiple interactions with the protein surface and possess a suitable linker exit vector. The high-affinity ligands were used to assemble prototypic new molecular glues and proteolysis targeting chimeras (PROTACs) targeting BRD4 for degradation. Our results highlight the importance of multicomponent reactions (MCRs) in drug discovery and add new insights into the rapidly growing field of protein degraders.

7.
J Med Chem ; 66(7): 4703-4733, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36996313

RESUMO

Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.


Assuntos
Proteínas Inibidoras de Apoptose , Neoplasias , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Neoplasias/metabolismo , Ligantes
8.
Blood Adv ; 7(4): 469-481, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35917568

RESUMO

Proteasome inhibition is a highly effective treatment for multiple myeloma (MM). However, virtually all patients develop proteasome inhibitor resistance, which is associated with a poor prognosis. Hyperactive small ubiquitin-like modifier (SUMO) signaling is involved in both cancer pathogenesis and cancer progression. A state of increased SUMOylation has been associated with aggressive cancer biology. We found that relapsed/refractory MM is characterized by a SUMO-high state, and high expression of the SUMO E1-activating enzyme (SAE1/UBA2) is associated with poor overall survival. Consistently, continuous treatment of MM cell lines with carfilzomib (CFZ) enhanced SUMO pathway activity. Treatment of MM cell lines with the SUMO E1-activating enzyme inhibitor subasumstat (TAK-981) showed synergy with CFZ in both CFZ-sensitive and CFZ-resistant MM cell lines, irrespective of the TP53 state. Combination therapy was effective in primary MM cells and in 2 murine MM xenograft models. Mechanistically, combination treatment with subasumstat and CFZ enhanced genotoxic and proteotoxic stress, and induced apoptosis was associated with activity of the prolyl isomerase PIN1. In summary, our findings reveal activated SUMOylation as a therapeutic target in MM and point to combined SUMO/proteasome inhibition as a novel and potent strategy for the treatment of proteasome inhibitor-resistant MM.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Animais , Camundongos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Sumoilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose , Enzimas Ativadoras de Ubiquitina/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/farmacologia
9.
EMBO J ; 41(20): e110871, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36059274

RESUMO

Deubiquitylases (DUBs) are therapeutically amenable components of the ubiquitin machinery that stabilize substrate proteins. Their inhibition can destabilize oncoproteins that may otherwise be undruggable. Here, we screened for DUB vulnerabilities in multiple myeloma, an incurable malignancy with dependency on the ubiquitin proteasome system and identified OTUD6B as an oncogene that drives the G1/S-transition. LIN28B, a suppressor of microRNA biogenesis, is specified as a bona fide cell cycle-specific substrate of OTUD6B. Stabilization of LIN28B drives MYC expression at G1/S, which in turn allows for rapid S-phase entry. Silencing OTUD6B or LIN28B inhibits multiple myeloma outgrowth in vivo and high OTUD6B expression evolves in patients that progress to symptomatic multiple myeloma and results in an adverse outcome of the disease. Thus, we link proteolytic ubiquitylation with post-transcriptional regulation and nominate OTUD6B as a potential mediator of the MGUS-multiple myeloma transition, a central regulator of MYC, and an actionable vulnerability in multiple myeloma and other tumors with an activated OTUD6B-LIN28B axis.


Assuntos
Endopeptidases , MicroRNAs , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-myc , Proteínas de Ligação a RNA , Ciclo Celular , Linhagem Celular Tumoral , Endopeptidases/genética , Humanos , MicroRNAs/genética , Mieloma Múltiplo/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Ligação a RNA/genética , Ubiquitinas/metabolismo
11.
Chem Commun (Camb) ; 58(63): 8858-8861, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35852517

RESUMO

Targeting deubiquitinating enzymes (DUBs) has emerged as a promising therapeutic approach in several human cancers and other diseases. DUB inhibitors are exciting pharmacological tools but often exhibit limited cellular potency. Here we report PROTACs based on a ubiquitin-specific protease 7 (USP7) inhibitor scaffold to degrade USP7. By investigating several linker and E3 ligand types, including novel cereblon recruiters, we discovered a highly selective USP7 degrader tool compound that induced apoptosis of USP7-dependent cancer cells. This work represents one of the first DUB degraders and unlocks a new drug target class for protein degradation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias , Apoptose , Humanos , Neoplasias/tratamento farmacológico , Peptidase 7 Específica de Ubiquitina/metabolismo
12.
BMC Infect Dis ; 22(1): 537, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35692034

RESUMO

BACKGROUND: Passive immunization against SARS-CoV-2 limits viral burden and death from COVID-19; however, it poses a theoretical risk of disease exacerbation through antibody-dependent enhancement (ADE). ADE after anti-SARS-CoV2 antibody treatment has not been reported, and therefore the potential risk and promoting factors remain unknown. CASE PRESENTATION: A 75-year-old female was admitted to the emergency room with recurrent, unexplained bruises and leukocytopenia, anemia, and thrombocytopenia. Evaluation of a bone marrow biopsy established the diagnosis of an acute promyelocytic leukemia (APL). SARS-CoV-2 RT-PCR testing of nasal and throat swabs on admission was negative. During the routine SARS-CoV-2 testing of inpatients, our patient tested positive for SARS-CoV-2 on day 14 after admission without typical COVID-19 symptoms. Due to disease- and therapy-related immunosuppression and advanced age conferring a high risk of progressing to severe COVID-19, casirivimab and imdevimab were administered as a preemptive approach. The patient developed immune activation and cytokine release syndrome (CRS) occurring within four hours of preemptive anti-SARS-CoV2 antibody (casirivimab/imdevimab) infusion. Immune activation and CRS were evidenced by a rapid increase in serum cytokines (IL-6, TNFα, IL-8, IL-10), acute respiratory insufficiency, and progressive acute respiratory distress syndrome. DISCUSSION AND CONCLUSION: The temporal relationship between therapeutic antibody administration and the rapid laboratory, radiological, and clinical deterioration suggests that CRS was an antibody-related adverse event, potentially exacerbated by APL treatment-mediated differentiation of leukemic blasts and promyelocytes. This case highlights the need for careful assessment of life-threatening adverse events after passive SARS-CoV-2 immunization, especially in the clinical context of patients with complex immune and hematological landscapes.


Assuntos
COVID-19 , Leucemia Promielocítica Aguda , Síndrome do Desconforto Respiratório , Idoso , Anticorpos Monoclonais Humanizados , COVID-19/complicações , COVID-19/diagnóstico , Teste para COVID-19 , Síndrome da Liberação de Citocina/diagnóstico , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Feminino , Humanos , Leucemia Promielocítica Aguda/complicações , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , SARS-CoV-2
13.
BMC Cancer ; 22(1): 569, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597904

RESUMO

BACKGROUND: This report summarizes three phase I studies evaluating volasertib, a polo-like kinase inhibitor, plus azacitidine in adults with myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia, or acute myeloid leukemia. METHODS: Patients received intravenous volasertib in 28-day cycles (dose-escalation schedules). In Part 1 of 1230.33 (Study 1; NCT01957644), patients received 250-350 mg volasertib on day (D)1 and D15; in Part 2, patients received different schedules [A, D1: 170 mg/m2; B, D7: 170 mg/m2; C, D1 and D7: 110 mg/m2]. In 1230.35 (Study 2; NCT02201329), patients received 200-300 mg volasertib on D1 and D15. In 1230.43 (Study 3; NCT02721875), patients received 110 mg/m2 volasertib on D1 and D8. All patients in Studies 1 and 2, and approximately half of the patients in Study 3, were scheduled to receive subcutaneous azacitidine 75 mg/m2 on D1-7. RESULTS: Overall, 22 patients were treated (17 with MDS; 12 previously untreated). Across Studies 1 and 2 (n = 21), the most common drug-related adverse events were hematological (thrombocytopenia [n = 11]; neutropenia [n = 8]). All dose-limiting toxicities were grade 4 thrombocytopenia. The only treated patient in Study 3 experienced 18 adverse events following volasertib monotherapy. Studies 1 and 2 showed preliminary activity (objective response rates: 25 and 40%). CONCLUSIONS: The safety of volasertib with azacitidine in patients with MDS was consistent with other volasertib studies. All studies were terminated prematurely following the discontinuation of volasertib for non-clinical reasons by Boehringer Ingelheim; however, safety information on volasertib plus azacitidine are of interest for future studies in other diseases.


Assuntos
Leucemia Mieloide Aguda , Leucemia Mielomonocítica Crônica , Síndromes Mielodisplásicas , Trombocitopenia , Adulto , Azacitidina/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mielomonocítica Crônica/induzido quimicamente , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Síndromes Mielodisplásicas/induzido quimicamente , Síndromes Mielodisplásicas/tratamento farmacológico , Pteridinas , Trombocitopenia/induzido quimicamente
14.
Nat Commun ; 13(1): 1009, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197447

RESUMO

The immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide are highly effective treatments for multiple myeloma. However, virtually all patients eventually relapse due to acquired drug resistance with resistance-causing genetic alterations being found only in a small subset of cases. To identify non-genetic mechanisms of drug resistance, we here perform integrated global quantitative tandem mass tag (TMT)-based proteomic and phosphoproteomic analyses and RNA sequencing in five paired pre-treatment and relapse samples from multiple myeloma patients. These analyses reveal a CDK6-governed protein resistance signature that includes myeloma high-risk factors such as TRIP13 and RRM1. Overexpression of CDK6 in multiple myeloma cell lines reduces sensitivity to IMiDs while CDK6 inhibition by palbociclib or CDK6 degradation by proteolysis targeting chimeras (PROTACs) is highly synergistic with IMiDs in vitro and in vivo. This work identifies CDK6 upregulation as a druggable target in IMiD-resistant multiple myeloma and highlights the use of proteomic studies to uncover non-genetic resistance mechanisms in cancer.


Assuntos
Quinase 6 Dependente de Ciclina , Lenalidomida , Mieloma Múltiplo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Fatores Imunológicos/farmacologia , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
15.
Case Rep Hematol ; 2022: 3317936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619478

RESUMO

The majority of patients with acute myeloid leukemia (AML) with the NPM1 mutation achieve remission with intensive chemotherapy. However, many patients subsequently relapse, which occurs frequently within the first 2-3 years after therapy, while late relapse after more than 10 years is rare and can also represent secondary/therapy-associated AML without the NPM1 mutation. Here, we present a case of NPM1-mutated AML that developed medullary and extramedullary relapse 17 years after allogeneic stem cell transplantation, maintaining the NPM1 mutation and all other genetic alterations detected at first diagnosis. This exceptionally long latency between diagnosis and relapse of a genetically highly related leukemic clone implies the existence of therapy-resistant, persisting dormant leukemic stem cells in NPM1 mutant AML.

16.
ACS Med Chem Lett ; 12(11): 1733-1738, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795861

RESUMO

Proteolysis targeting chimeras (PROTACs) hijacking the cereblon (CRBN) E3 ubiquitin ligase have emerged as a novel paradigm in drug development. Herein we found that linker attachment points of CRBN ligands highly affect their aqueous stability and neosubstrate degradation features. This work provides a blueprint for the assembly of future heterodimeric CRBN-based degraders with tailored properties.

17.
J Clin Oncol ; 39(30): 3318-3327, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34283629

RESUMO

PURPOSE: In contrast to 5-azacytidine (5-aza), allogeneic stem-cell transplantation (HSCT) represents a curative treatment strategy for patients with myelodysplastic syndromes (MDS), but therapy-related mortality (TRM) limits its broader use in elderly patients with MDS. The present prospective multicenter study compared HSCT following 5-aza pretreatment with continuous 5-aza treatment in patients with higher-risk MDS age 55-70 years. METHODS: One hundred ninety patients with a median age of 63 years were enrolled. Patients received 4-6 cycles of 5-aza followed by HLA-compatible HSCT after reduced-intensity conditioning or by continuous 5-aza if no donor was identified. RESULTS: Twenty-eight patients did not fulfill inclusion criteria (n = 20), died (n = 2) withdrew informed consent (n = 5), or were excluded for an unknown reason (n = 1). 5-aza induction started in 162 patients, but only 108 (67%) were eligible for subsequent allocation to HSCT (n = 81) or continuation of 5-aza (n = 27) because of disease progression (n = 26), death (n = 12), or other reasons (n = 16). Seven percent died during 5-aza before treatment allocation. The cumulative incidence of TRM after HSCT at 1 year was 19%. The event-free survival and overall survival after 5-aza pretreatment and treatment allocation at 3 years were 34% (95% CI, 22 to 47) and 50% (95% CI, 39 to 61) after allograft and 0% and 32% (95% CI, 14 to 52) after continuous 5-aza treatment (P < .0001 and P = .12), respectively. Fourteen patients progressing after continuous 5-aza received a salvage allograft from an alternative donor, and 43% were alive at last follow-up. CONCLUSION: In older patients with MDS, reduced-intensity conditioning HSCT resulted in a significantly improved event-free survival in comparison with continuous 5-aza therapy. Bridging with 5-aza to HSCT before is associated with a considerable rate of dropouts because of progression, mortality, and adverse events.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Síndromes Mielodisplásicas/terapia , Transplante de Células-Tronco , Condicionamento Pré-Transplante , Idoso , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/efeitos adversos , Azacitidina/administração & dosagem , Azacitidina/efeitos adversos , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Estudos Prospectivos , Recidiva , Transplante de Células-Tronco/efeitos adversos , Taxa de Sobrevida , Doadores de Tecidos , Condicionamento Pré-Transplante/efeitos adversos , Transplante Homólogo
18.
Blood ; 138(18): 1721-1726, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34115836

RESUMO

Cereblon is the direct binding target of the immunomodulatory drugs (IMiDs) that are commonly used to treat multiple myeloma (MM), the second most frequent hematologic malignancy. Patients respond well to initial treatment with IMiDs, but virtually all patients develop drug resistance over time, and the underlying mechanisms are poorly understood. We identified an as yet undescribed DNA hypermethylation in an active intronic CRBN enhancer. Differential hypermethylation in this region was found to be increased in healthy plasma cells, but was more pronounced in IMiD-refractory MM. Methylation significantly correlated with decreased CRBN expression levels. DNA methyltransferase inhibitor (DNTMi) in vitro experiments induced CRBN enhancer demethylation, and sensitizing effects on lenalidomide treatment were observed in 2 MM cell lines. Thus, we provide first evidence that aberrant CRBN DNA methylation is a novel mechanism of IMiD resistance in MM and may predict IMiD response prior to treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos Imunológicos/uso terapêutico , Agentes de Imunomodulação/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Ubiquitina-Proteína Ligases/genética , Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Elementos Facilitadores Genéticos/efeitos dos fármacos , Humanos , Íntrons/efeitos dos fármacos , Mieloma Múltiplo/genética
19.
Blood Adv ; 5(9): 2391-2402, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33950175

RESUMO

The introduction of new drugs in the past years has substantially improved outcome in multiple myeloma (MM). However, the majority of patients eventually relapse and become resistant to one or multiple drugs. While the genetic landscape of relapsed/ resistant multiple myeloma has been elucidated, the causal relationship between relapse-specific gene mutations and the sensitivity to a given drug in MM has not systematically been evaluated. To determine the functional impact of gene mutations, we performed combined whole-exome sequencing (WES) of longitudinal patient samples with CRISPR-Cas9 drug resistance screens for lenalidomide, bortezomib, dexamethasone, and melphalan. WES of longitudinal samples from 16 MM patients identified a large number of mutations in each patient that were newly acquired or evolved from a small subclone (median 9, range 1-55), including recurrent mutations in TP53, DNAH5, and WSCD2. Focused CRISPR-Cas9 resistance screens against 170 relapse-specific mutations functionally linked 15 of them to drug resistance. These included cereblon E3 ligase complex members for lenalidomide, structural genes PCDHA5 and ANKMY2 for dexamethasone, RB1 and CDK2NC for bortezomib, and TP53 for melphalan. In contrast, inactivation of genes involved in the DNA damage repair pathway, including ATM, FANCA, RAD54B, and BRCC3, enhanced susceptibility to cytotoxic chemotherapy. Resistance patterns were highly drug specific with low overlap and highly correlated with the treatment-dependent clonal evolution in patients. The functional association of specific genetic alterations with drug sensitivity will help to personalize treatment of MM in the future.


Assuntos
Mieloma Múltiplo , Preparações Farmacêuticas , Sistemas CRISPR-Cas , Humanos , Lenalidomida , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...