Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 20(1): 885, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933495

RESUMO

BACKGROUND: Identifying and tracking somatic mutations in cell-free DNA (cfDNA) by next-generation sequencing (NGS) has the potential to transform the clinical management of subjects with advanced non-small cell lung cancer (NSCLC). METHODS: Baseline tumor tissue (n = 47) and longitudinal plasma (n = 445) were collected from 71 NSCLC subjects treated with chemotherapy. cfDNA was enriched using a targeted-capture NGS kit containing 197 genes. Clinical responses to treatment were determined using RECIST v1.1 and correlations between changes in plasma somatic variant allele frequencies and disease progression were assessed. RESULTS: Somatic variants were detected in 89.4% (42/47) of tissue and 91.5% (407/445) of plasma samples. The most commonly mutated genes in tissue were TP53 (42.6%), KRAS (25.5%), and KEAP1 (19.1%). In some subjects, the allele frequencies of mutations detected in plasma increased 3-5 months prior to disease progression. In other cases, the allele frequencies of detected mutations declined or decreased to undetectable levels, indicating clinical response. Subjects with circulating tumor DNA (ctDNA) levels above background had significantly shorter progression-free survival (median: 5.6 vs 8.9 months, respectively; log-rank p = 0.0183). CONCLUSION: Longitudinal monitoring of mutational changes in plasma has the potential to predict disease progression early. The presence of ctDNA mutations during first-line treatment is a risk factor for earlier disease progression in advanced NSCLC.


Assuntos
Adenocarcinoma/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/sangue , Plasma/metabolismo , Adenocarcinoma/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação
2.
J Mol Diagn ; 22(2): 228-235, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31837429

RESUMO

Molecular biomarkers hold promise for personalization of cancer treatment. However, a typical tumor biopsy may be difficult to acquire and may not capture genetic variations within or across tumors. Given these limitations, tumor genotyping using next-generation sequencing of plasma-derived circulating tumor (ct)-DNA has the potential to transform non-small cell lung cancer (NSCLC) management. Importantly, mutations detected in biopsied tissue must also be detected in plasma-derived ctDNA at different disease stages. Using the AVENIO ctDNA Surveillance kit (research use only), mutations in ctDNA from NSCLC subjects were compared with those identified in matched tumor tissue samples, retrospectively. Plasma and tissue samples were collected from 141 treatment-naïve NSCLC subjects (stage I, n = 48; stage II, n = 37; stage III, n = 33; stage IV, n = 23). In plasma samples, the median numbers of variants per subject were 4, 6, 8, and 9 in those with stage I, II, III, and IV disease, respectively. The corresponding values in tissue samples were 5, 5, 6, and 4. The overall tissue-plasma concordance of stage II through IV was 62.2% by AVENIO software call. On multivariate analysis, concordance was positively and significantly associated with tumor size and cancer stage. Next-generation sequencing-based analyses with the AVENIO ctDNA Surveillance kit could be an alternative approach to detecting genetic variations in plasma-derived ctDNA isolated from NSCLC subjects.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante , DNA de Neoplasias , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores Tumorais , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Razão de Chances , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...