Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nutrients ; 16(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474863

RESUMO

In 2017, four independent publications described the glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as receptor for the growth differentiation factor 15 (GDF15, also MIC-1, NAG-1) with an expression exclusively in the mice brainstem area postrema (AP) and nucleus tractus solitarii (NTS) where it mediates effects of GDF15 on reduction of food intake and body weight. GDF15 is a cell stress cytokine with a widespread expression and pleiotropic effects, which both seem to be in contrast to the reported highly specialized localization of its receptor. This discrepancy prompts us to re-evaluate the expression pattern of GFRAL in the brain and peripheral tissues of mice. In this detailed immunohistochemical study, we provide evidence for a more widespread distribution of this receptor. Apart from the AP/NTS region, GFRAL-immunoreactivity was found in the prefrontal cortex, hippocampus, nucleus arcuatus and peripheral tissues including liver, small intestine, fat, kidney and muscle tissues. This widespread receptor expression, not taken into consideration so far, may explain the multiple effects of GDF-15 that are not yet assigned to GFRAL. Furthermore, our results could be relevant for the development of novel pharmacological therapies for physical and mental disorders related to body image and food intake, such as eating disorders, cachexia and obesity.


Assuntos
Caquexia , Obesidade , Humanos , Camundongos , Animais , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Peso Corporal/fisiologia , Obesidade/metabolismo , Caquexia/metabolismo , Núcleo Solitário/metabolismo
3.
Sci Rep ; 12(1): 16723, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202964

RESUMO

The hippocampus is a very heterogeneous brain structure with different mechanical properties reflecting its functional variety. In particular, adult neurogenesis in rodent hippocampus has been associated with specific viscoelastic properties in vivo and ex vivo. Here, we study the microscopic mechanical properties of hippocampal subregions using ex vivo atomic force microscopy (AFM) in correlation with the expression of GFP in presence of the nestin promoter, providing a marker of neurogenic activity. We further use magnetic resonance elastography (MRE) to investigate whether in vivo mechanical properties reveal similar spatial patterns, however, on a much coarser scale. AFM showed that tissue stiffness increases with increasing distance from the subgranular zone (p = 0.0069), and that stiffness is 39% lower in GFP than non-GFP regions (p = 0.0004). Consistently, MRE showed that dentate gyrus is, on average, softer than Ammon´s horn (shear wave speed = 3.2 ± 0.2 m/s versus 4.4 ± 0.3 m/s, p = 0.01) with another 3.4% decrease towards the subgranular zone (p = 0.0001). The marked reduction in stiffness measured by AFM in areas of high neurogenic activity is consistent with softer MRE values, indicating the sensitivity of macroscopic mechanical properties in vivo to micromechanical structures as formed by the neurogenic niche of the hippocampus.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Hipocampo/patologia , Imageamento por Ressonância Magnética , Camundongos , Microscopia de Força Atômica , Nestina
4.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743312

RESUMO

Metabolic syndrome is a significant worldwide public health challenge and is inextricably linked to adverse renal and cardiovascular outcomes. The inhibition of the transient receptor potential cation channel subfamily C member 6 (TRPC6) has been found to ameliorate renal outcomes in the unilateral ureteral obstruction (UUO) of accelerated renal fibrosis. Therefore, the pharmacological inhibition of TPRC6 could be a promising therapeutic intervention in the progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome. In the present study, we hypothesized that the novel selective TRPC6 inhibitor SH045 (larixyl N-methylcarbamate) ameliorates UUO-accelerated renal fibrosis in a New Zealand obese (NZO) mouse model, which is a polygenic model of metabolic syndrome. The in vivo inhibition of TRPC6 by SH045 markedly decreased the mRNA expression of pro-fibrotic markers (Col1α1, Col3α1, Col4α1, Acta2, Ccn2, Fn1) and chemokines (Cxcl1, Ccl5, Ccr2) in UUO kidneys of NZO mice compared to kidneys of vehicle-treated animals. Renal expressions of intercellular adhesion molecule 1 (ICAM-1) and α-smooth muscle actin (α-SMA) were diminished in SH045- versus vehicle-treated UUO mice. Furthermore, renal inflammatory cell infiltration (F4/80+ and CD4+) and tubulointerstitial fibrosis (Sirius red and fibronectin staining) were ameliorated in SH045-treated NZO mice. We conclude that the pharmacological inhibition of TRPC6 might be a promising antifibrotic therapeutic method to treat progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome.


Assuntos
Hipertensão , Nefropatias , Síndrome Metabólica , Obstrução Ureteral , Animais , Modelos Animais de Doenças , Fibrose , Hipertensão/metabolismo , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/genética , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Obesos , Nova Zelândia , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Canal de Cátion TRPC6/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética
5.
Microbiome ; 10(1): 96, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739571

RESUMO

BACKGROUND: Bariatric surgery remains the most effective therapy for adiposity reduction and remission of type 2 diabetes. Although different bariatric procedures associate with pronounced shifts in the gut microbiota, their functional role in the regulation of energetic and metabolic benefits achieved with the surgery are not clear. METHODS: To evaluate the causal as well as the inherent therapeutic character of the surgery-altered gut microbiome in improved energy and metabolic control in diet-induced obesity, an antibiotic cocktail was used to eliminate the gut microbiota in diet-induced obese rats after gastric bypass surgery, and gastric bypass-shaped gut microbiota was transplanted into obese littermates. Thorough metabolic profiling was combined with omics technologies on samples collected from cecum and plasma to identify adaptions in gut microbiota-host signaling, which control improved energy balance and metabolic profile after surgery. RESULTS: In this study, we first demonstrate that depletion of the gut microbiota largely reversed the beneficial effects of gastric bypass surgery on negative energy balance and improved glucolipid metabolism. Further, we show that the gastric bypass-shaped gut microbiota reduces adiposity in diet-induced obese recipients by re-activating energy expenditure from metabolic active brown adipose tissue. These beneficial effects were linked to improved glucose homeostasis, lipid control, and improved fatty liver disease. Mechanistically, these effects were triggered by modulation of taurine metabolism by the gastric bypass gut microbiota, fostering an increased abundance of intestinal and circulating taurine-conjugated bile acid species. In turn, these bile acids activated gut-restricted FXR and systemic TGR5 signaling to stimulate adaptive thermogenesis. CONCLUSION: Our results establish the role of the gut microbiome in the weight loss and metabolic success of gastric bypass surgery. We here identify a signaling cascade that entails altered bile acid receptor signaling resulting from a collective, hitherto undescribed change in the metabolic activity of a cluster of bacteria, thereby readjusting energy imbalance and metabolic disease in the obese host. These findings strengthen the rationale for microbiota-targeted strategies to improve and refine current therapies of obesity and metabolic syndrome. Video Abstract Bariatric Surgery (i.e. RYGB) or the repeated fecal microbiota transfer (FMT) from RYGB donors into DIO (diet-induced obesity) animals induces shifts in the intestinal microbiome, an effect that can be impaired by oral application of antibiotics (ABx). Our current study shows that RYGB-dependent alterations in the intestinal microbiome result in an increase in the luminal and systemic pool of Taurine-conjugated Bile acids (TCBAs) by various cellular mechanisms acting in the intestine and the liver. TCBAs induce signaling via two different receptors, farnesoid X receptor (FXR, specifically in the intestines) and the G-protein-coupled bile acid receptor TGR5 (systemically), finally resulting in metabolic improvement and advanced weight management. BSH, bile salt hydrolase; BAT brown adipose tissue.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Microbiota , Tecido Adiposo/metabolismo , Animais , Ácidos e Sais Biliares , Glicemia , Dieta , Obesidade/metabolismo , Obesidade/cirurgia , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Taurina , Termogênese
6.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408998

RESUMO

TRPC6, the sixth member of the family of canonical transient receptor potential (TRP) channels, contributes to a variety of physiological processes and human pathologies. This study extends the knowledge on the newly developed TRPC6 blocker SH045 with respect to its main target organs beyond the description of plasma kinetics. According to the plasma concentration-time course in mice, SH045 is measurable up to 24 h after administration of 20 mg/kg BW (i.v.) and up to 6 h orally. The short plasma half-life and rather low oral bioavailability are contrasted by its reported high potency. Dosage limits were not worked out, but absence of safety concerns for 20 mg/kg BW supports further dose exploration. The disposition of SH045 is described. In particular, a high extravascular distribution, most prominent in lung, and a considerable renal elimination of SH045 were observed. SH045 is a substrate of CYP3A4 and CYP2A6. Hydroxylated and glucuronidated metabolites were identified under optimized LC-MS/MS conditions. The results guide a reasonable selection of dose and application route of SH045 for target-directed preclinical studies in vivo with one of the rare high potent and subtype-selective TRPC6 inhibitors available.


Assuntos
Espectrometria de Massas em Tandem , Animais , Disponibilidade Biológica , Cromatografia Líquida , Camundongos , Canal de Cátion TRPC6
7.
Sci Rep ; 12(1): 3038, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194063

RESUMO

Transient receptor potential channel subfamily C, member 6 (TRPC6), a non-selective cation channel that controls influx of Ca2+ and other monovalent cations into cells, is widely expressed in the kidney. TRPC6 gene variations have been linked to chronic kidney disease but its role in acute kidney injury (AKI) is unknown. Here we aimed to investigate the putative role of TRPC6 channels in AKI. We used Trpc6-/- mice and pharmacological blockade (SH045 and BI-749327), to evaluate short-term AKI outcomes. Here, we demonstrate that neither Trpc6 deficiency nor pharmacological inhibition of TRPC6 influences the short-term outcomes of AKI. Serum markers, renal expression of epithelial damage markers, tubular injury, and renal inflammatory response assessed by the histological analysis were similar in wild-type mice compared to Trpc6-/- mice as well as in vehicle-treated versus SH045- or BI-749327-treated mice. In addition, we also found no effect of TRPC6 modulation on renal arterial myogenic tone by using blockers to perfuse isolated kidneys. Therefore, we conclude that TRPC6 does not play a role in the acute phase of AKI. Our results may have clinical implications for safety and health of humans with TRPC6 gene variations, with respect to mutated TRPC6 channels in the response of the kidney to acute ischemic stimuli.


Assuntos
Injúria Renal Aguda/genética , Variação Genética , Isquemia/genética , Rim/irrigação sanguínea , Resultados Negativos , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/fisiologia , APACHE , Injúria Renal Aguda/patologia , Animais , Cálcio/metabolismo , Isquemia/patologia , Rim/metabolismo , Camundongos Transgênicos
8.
Curr Opin Pharmacol ; 61: 62-68, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628304

RESUMO

In evidence-based pharmacotherapy, the complexity of etiopathogenesis and pathophysiology of mental diseases has attracted comparably little consideration so far. The choice of currently available pharmacotherapies is predominantly guided by specific clinical phenotypes and is limited by low response rates and clinically relevant side effects. Nutraceuticals typically represent multicomponent compounds and may offer high therapeutic potential, by simultaneously addressing multiple aspects in mental disease pathogenesis with rather little side effects. Here, recent pharmacological research on natural products is assessed with focus on a multitarget therapeutic concept, based on shared molecular mechanisms, and in particular, on how far nutraceuticals might address such multitargets. Overcoming deficits regarding clearly defined compositions, concentration-dependent and causative structure-activity-response relationships, evaluation of bioavailability, metabolic fate, and long-term safety are crucial for translating potential plant-based drug candidates into proof-of-concept clinical studies.


Assuntos
Produtos Biológicos , Suplementos Nutricionais , Disponibilidade Biológica
10.
Nanomedicine ; 36: 102403, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33932594

RESUMO

Therapeutic gene silencing by RNA interference relies on the safe and efficient in vivo delivery of small interfering RNAs (siRNAs). Polyethylenimines are among the most studied cationic polymers for gene delivery. For several reasons including superior tolerability, small linear PEIs would be preferable over branched PEIs, but they show poor siRNA complexation. Their chemical modification for siRNA formulation has not been extensively explored so far. We generated a set of small linear PEIs bearing tyrosine modifications (LPxY), leading to substantially enhanced siRNA delivery and knockdown efficacy in vitro in various cell lines, including hard-to-transfect cells. The tyrosine-modified linear 10 kDa PEI (LP10Y) is particularly powerful, associated with favorable physicochemical properties and very high biocompatibility. Systemically administered LP10Y/siRNA complexes reveal antitumor effects in mouse xenograft and patient-derived xenograft (PDX) models, and their direct application into the brain achieves therapeutic inhibition of orthotopic glioma xenografts. LP10Y is particularly interesting for therapeutic siRNA delivery.


Assuntos
Terapia Genética , Neoplasias Experimentais , Polietilenoimina , RNA Interferente Pequeno , Transfecção , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Polietilenoimina/química , Polietilenoimina/farmacologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805686

RESUMO

TRPC6 (transient receptor potential cation channels; canonical subfamily C, member 6) is widespread localized in mammalian tissues like kidney and lung and associated with progressive proteinuria and pathophysiological pulmonary alterations, e.g., reperfusion edema or lung fibrosis. However, the understanding of TRPC6 channelopathies is still at the beginning stages. Recently, by chemical diversification of (+)-larixol originating from Larix decidua resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was obtained and identified in functional assays as a highly potent, subtype-selective inhibitor of TRPC6. To pave the way for use of SH045 in animal disease models, this study aimed at developing a capable bioanalytical method and to provide exploratory pharmacokinetic data for this promising derivative. According to international guidelines, a robust and selective LC-MS/MS method based on MRM detection in positive ion mode was established and validated for quantification of SH045 in mice plasma, whereby linearity and accuracy were demonstrated for the range of 2-1600 ng/mL. Applying this method, the plasma concentration time course of SH045 following single intraperitoneal administration (20 mg/kg body weight) revealed a short half-life of 1.3 h. However, the pharmacological profile of SH045 is promising, as five hours after administration, plasma levels still remained sufficiently higher than published low nanomolar IC50 values. Summarizing, the LC-MS/MS method and exploratory pharmacokinetic data provide essential prerequisites for experimental pharmacological TRPC6 modulation and translational treatment of TRPC6 channelopathies.

12.
Mol Metab ; 48: 101214, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741533

RESUMO

OBJECTIVE: Hypothalamic inflammation and endoplasmic reticulum (ER) stress are extensively linked to leptin resistance and overnutrition-related diseases. Surgical intervention remains the most efficient long-term weight-loss strategy for morbid obesity, but mechanisms underlying sustained feeding suppression remain largely elusive. This study investigated whether Roux-en-Y gastric bypass (RYGB) interacts with obesity-associated hypothalamic inflammation to restore central leptin signaling as a mechanistic account for post-operative appetite suppression. METHODS: RYGB or sham surgery was performed in high-fat diet-induced obese Wistar rats. Sham-operated rats were fed ad libitum or by weight matching to RYGB via calorie restriction (CR) before hypothalamic leptin signaling, microglia reactivity, and the inflammatory pathways were examined to be under the control of gut microbiota-derived circulating signaling. RESULTS: RYGB, other than CR-induced adiposity reduction, ameliorates hypothalamic gliosis, inflammatory signaling, and ER stress, which are linked to enhanced hypothalamic leptin signaling and responsiveness. Mechanistically, we demonstrate that RYGB interferes with hypothalamic ER stress and toll-like receptor 4 (TLR4) signaling to restore the anorexigenic action of leptin, which most likely results from modulation of a circulating factor derived from the altered gut microbial environment upon RYGB surgery. CONCLUSIONS: Our data demonstrate that RYGB interferes with hypothalamic TLR4 signaling to restore the anorexigenic action of leptin, which most likely results from modulation of a circulating factor derived from the post-surgical altered gut microbial environment.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal , Hipotálamo/metabolismo , Leptina/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Obesidade Mórbida/cirurgia , Transdução de Sinais , Redução de Peso , Animais , Restrição Calórica , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Obesidade Mórbida/etiologia , Ratos , Ratos Wistar , Resultado do Tratamento
13.
Cancers (Basel) ; 12(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967361

RESUMO

Glioblastomas (GBMs) are the most malignant brain tumors and are essentially incurable even after extensive surgery, radiotherapy, and chemotherapy, mainly because of extensive infiltration of tumor cells into the adjacent normal tissue. Thus, the evaluation of novel drugs in malignant glioma treatment requires sophisticated ex vivo models that approach the authentic interplay between tumor and host environment while avoiding extensive in vivo studies in animals. This paper describes the standardized setup of an organotypic brain tissue slice tandem-culture system, comprising of normal brain tissue from adult mice and tumor tissue from human glioblastoma xenografts, and explore its utility for assessing inhibitory effects of test drugs. The microscopic analysis of vertical sections of the slice tandem-cultures allows for the simultaneous assessment of (i) the invasive potential of single cells or cell aggregates and (ii) the space occupying growth of the bulk tumor mass, both contributing to malignant tumor progression. The comparison of tissue slice co-cultures with spheroids vs. tissue slice tandem-cultures using tumor xenograft slices demonstrates advantages of the xenograft tandem approach. The direct and facile application of test drugs is shown to exert inhibitory effects on bulk tumor growth and/or tumor cell invasion, and allows their precise quantitation. In conclusion, we describe a straightforward ex vivo system mimicking the in vivo situation of the tumor mass and the normal brain in GBM patients. It reduces animal studies and allows for the direct and reproducible application of test drugs and the precise quantitation of their effects on the bulk tumor mass and on the tumor's invasive properties.

14.
Microbiome ; 8(1): 13, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033593

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery is a last-resort treatment to induce substantial and sustained weight loss in cases of severe obesity. This anatomical rearrangement affects the intestinal microbiota, but so far, little information is available on how it interferes with microbial functionality and microbial-host interactions independently of weight loss. METHODS: A rat model was employed where the RYGB-surgery cohort is compared to sham-operated controls which were kept at a matched body weight by food restriction. We investigated the microbial taxonomy and functional activity using 16S rRNA amplicon gene sequencing, metaproteomics, and metabolomics on samples collected from theileum, the cecum, and the colon, and separately analysed the lumen and mucus-associated microbiota. RESULTS: Altered gut architecture in RYGB increased the relative occurrence of Actinobacteria, especially Bifidobacteriaceae and Proteobacteria, while in general, Firmicutes were decreased although Streptococcaceae and Clostridium perfringens were observed at relative higher abundances independent of weight loss. A decrease of conjugated and secondary bile acids was observed in the RYGB-gut lumen. The arginine biosynthesis pathway in the microbiota was altered, as indicated by the changes in the abundance of upstream metabolites and enzymes, resulting in lower levels of arginine and higher levels of aspartate in the colon after RYGB. CONCLUSION: The anatomical rearrangement in RYGB affects microbiota composition and functionality as well as changes in amino acid and bile acid metabolism independently of weight loss. The shift in the taxonomic structure of the microbiota after RYGB may be mediated by the resulting change in the composition of the bile acid pool in the gut and by changes in the composition of nutrients in the gut. Video abstract.


Assuntos
Bactérias/classificação , Derivação Gástrica , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Redução de Peso , Animais , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Fezes/microbiologia , Masculino , RNA Ribossômico 16S/genética , Ratos , Ratos Wistar
15.
Front Psychiatry ; 11: 639219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569017
16.
Eur J Med Chem ; 165: 142-159, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30665144

RESUMO

Purine nucleotides such as ATP and ADP are important extracellular signaling molecules in almost all tissues activating various subtypes of purinoreceptors. In the brain, the P2Y1 receptor (P2Y1R) subtype mediates trophic functions like differentiation and proliferation, and modulates fast synaptic transmission, both suggested to be affected in diseases of the central nervous system. Research on P2Y1R is limited because suitable brain-penetrating P2Y1R-selective tracers are not yet available. Here, we describe the first efforts to develop an 18F-labeled PET tracer based on the structure of the highly affine and selective, non-nucleotidic P2Y1R allosteric modulator 1-(2-[2-(tert-butyl)phenoxy]pyridin-3-yl)-3-[4-(trifluoromethoxy)phenyl]urea (7). A small series of fluorinated compounds was developed by systematic modification of the p-(trifluoromethoxy)phenyl, the urea and the 2-pyridyl subunits of the lead compound 7. Additionally, the p-(trifluoromethoxy)phenyl subunit was substituted by carborane, a boron-rich cluster with potential applicability in boron neutron capture therapy (BNCT). By functional assays, the new fluorinated derivative 1-{2-[2-(tert-butyl)phenoxy]pyridin-3-yl}-3-[4-(2-fluoroethyl)phenyl]urea (18) was identified with a high P2Y1R antagonistic potency (IC50 = 10 nM). Compound [18F]18 was radiosynthesized by using tetra-n-butyl ammonium [18F]fluoride with high radiochemical purity, radiochemical yield and molar activities. Investigation of brain homogenates using hydrophilic interaction chromatography (HILIC) revealed [18F]fluoride as major radiometabolite. Although [18F]18 showed fast in vivo metabolization, the high potency and unique allosteric binding mode makes this class of compounds interesting for further optimizations and investigation of the theranostic potential as PET tracer and BNCT agent.


Assuntos
Encéfalo/diagnóstico por imagem , Compostos de Fenilureia/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Receptores Purinérgicos P2Y1/análise , Sítio Alostérico , Terapia por Captura de Nêutron de Boro/métodos , Radioisótopos de Flúor , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/química
17.
Sci Transl Med ; 10(453)2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089635

RESUMO

Osteoporosis and obesity result from disturbed osteogenic and adipogenic differentiation and present emerging challenges for our aging society. Because of the regulatory role of Thy-1 in mesenchyme-derived fibroblasts, we investigated the impact of Thy-1 expression on mesenchymal stem cell (MSC) fate between osteogenic and adipogenic differentiation and consequences for bone formation and adipose tissue development in vivo. MSCs from Thy-1-deficient mice have decreased osteoblast differentiation and increased adipogenic differentiation compared to MSCs from wild-type mice. Consistently, Thy-1-deficient mice exhibited decreased bone volume and bone formation rate with elevated cortical porosity, resulting in lower bone strength. In parallel, body weight, subcutaneous/epigonadal fat mass, and bone fat volume were increased. Thy-1 deficiency was accompanied by reduced expression of specific Wnt ligands with simultaneous increase of the Wnt inhibitors sclerostin and dickkopf-1 and an altered responsiveness to Wnt. We demonstrated that disturbed bone remodeling in osteoporosis and dysregulated adipose tissue accumulation in patients with obesity were mirrored by reduced serum Thy-1 concentrations. Our findings provide new insights into the mutual regulation of bone formation and obesity and open new perspectives to monitor and to interfere with the dysregulated balance of adipogenesis and osteogenesis in obesity and osteoporosis.


Assuntos
Obesidade/prevenção & controle , Osteogênese/efeitos dos fármacos , Antígenos Thy-1/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adiposidade , Animais , Diferenciação Celular , Regulação para Baixo , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/complicações , Tamanho do Órgão , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoporose/sangue , Osteoporose/complicações , Osteoporose/patologia , Antígenos Thy-1/sangue , Antígenos Thy-1/deficiência , Fator de Necrose Tumoral alfa/metabolismo , Via de Sinalização Wnt
18.
J Neurosci ; 38(6): 1351-1365, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29279307

RESUMO

Injury to the peripheral axons of sensory neurons strongly enhances the regeneration of their central axons in the spinal cord. It remains unclear on what molecules that initiate such conditioning effect. Because ATP is released extracellularly by nerve and other tissue injury, we hypothesize that injection of ATP into a peripheral nerve might mimic the stimulatory effect of nerve injury on the regenerative state of the primary sensory neurons. We found that a single injection of 6 µl of 150 µm ATP into female rat sciatic nerve quadrupled the number of axons growing into a lesion epicenter in spinal cord after a concomitant dorsal column transection. A second boost ATP injection 1 week after the first one markedly reinforced the stimulatory effect of a single injection. Single ATP injection increased expression of phospho-STAT3 and GAP43, two markers of regenerative activity, in sensory neurons. Double ATP injections sustained the activation of phospho-STAT3 and GAP43, which may account for the marked axonal growth across the lesion epicenter. Similar studies performed on P2X7 or P2Y2 receptor knock-out mice indicate P2Y2 receptors are involved in the activation of STAT3 after ATP injection or conditioning lesion, whereas P2X7 receptors are not. Injection of ATP at 150 µm caused little Wallerian degeneration and behavioral tests showed no significant long-term adverse effects on sciatic nerve functions. The results in this study reveal possible mechanisms underlying the stimulation of regenerative programs and suggest a practical strategy for stimulating axonal regeneration following spinal cord injury.SIGNIFICANCE STATEMENT Injury of peripheral axons of sensory neurons has been known to strongly enhance the regeneration of their central axons in the spinal cord. In this study, we found that injection of ATP into a peripheral nerve can mimic the effect of peripheral nerve injury and significantly increase the number of sensory axons growing across lesion epicenter in the spinal cord. ATP injection increased expression of several markers for regenerative activity in sensory neurons, including phospho-STAT3 and GAP43. ATP injection did not cause significant long-term adverse effects on the functions of the injected nerve. These results may lead to clinically applicable strategies for enhancing neuronal responses that support regeneration of injured axons.


Assuntos
Trifosfato de Adenosina/farmacologia , Axônios/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Trifosfato de Adenosina/administração & dosagem , Animais , Comportamento Animal , Feminino , Proteína GAP-43/biossíntese , Proteína GAP-43/genética , Injeções , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Ratos , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2Y2/genética , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Nervo Isquiático , Traumatismos da Medula Espinal/patologia , Degeneração Walleriana/genética , Degeneração Walleriana/fisiopatologia
19.
Int J Mol Sci ; 18(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379199

RESUMO

The ghrelin receptor (GhrR) is a widely investigated target in several diseases. However, the current knowledge of its role and distribution in the brain is limited. Recently, the small and non-peptidic compound (S)-6-(4-bromo-2-fluorophenoxy)-3-((1-isopropylpiperidin-3-yl)methyl)-2-methylpyrido[3,2-d]pyrimidin-4(3H)-one ((S)-9) has been described as a GhrR ligand with high binding affinity. Here, we describe the synthesis of fluorinated derivatives, the in vitro evaluation of their potency as partial agonists and selectivity at GhrRs, and their physicochemical properties. These results identified compounds (S)-9, (R)-9, and (S)-16 as suitable parent molecules for 18F-labeled positron emission tomography (PET) radiotracers to enable future investigation of GhrR in the brain.


Assuntos
Proteínas de Transporte/metabolismo , Imagem Molecular/métodos , Pirimidinas/síntese química , Pirimidinas/metabolismo , Animais , Células CHO , Cricetulus , Halogenação , Humanos , Ligantes , Estrutura Molecular , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Pirimidinas/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo
20.
Pain ; 158(5): 856-867, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28106668

RESUMO

The melastatin-related transient receptor potential (TRP) channel TRPM3 is a nonselective cation channel expressed in nociceptive neurons and activated by heat. Because TRPM3-deficient mice show inflammatory thermal hyperalgesia, pharmacological inhibition of TRPM3 may exert antinociceptive properties. Fluorometric Ca influx assays and a compound library containing approved or clinically tested drugs were used to identify TRPM3 inhibitors. Biophysical properties of channel inhibition were assessed using electrophysiological methods. The nonsteroidal anti-inflammatory drug diclofenac, the tetracyclic antidepressant maprotiline, and the anticonvulsant primidone were identified as highly efficient TRPM3 blockers with half-maximal inhibition at 0.6 to 6 µM and marked specificity for TRPM3. Most prominently, primidone was biologically active to suppress TRPM3 activation by pregnenolone sulfate (PregS) and heat at concentrations markedly lower than plasma concentrations commonly used in antiepileptic therapy. Primidone blocked PregS-induced Cai influx through TRPM3 by allosteric modulation and reversibly inhibited atypical inwardly rectifying TRPM3 currents induced by coapplication of PregS and clotrimazole. In vivo, analgesic effects of low doses of primidone were demonstrated in mice, applying PregS- and heat-induced pain models, including inflammatory hyperalgesia. Thus, applying the approved drug at concentrations that are lower than those needed to induce anticonvulsive effects offers a shortcut for studying physiological and pathophysiological roles of TRPM3 in vivo.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Dor/fisiopatologia , Pregnenolona/toxicidade , Primidona/uso terapêutico , Canais de Cátion TRPM/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Inibidores da Captação Adrenérgica/uso terapêutico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Cálcio/metabolismo , Diclofenaco/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Células HEK293 , Humanos , Hiperalgesia/etiologia , Masculino , Maprotilina/farmacologia , Maprotilina/uso terapêutico , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Dor/induzido quimicamente , Limiar da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Primidona/química , Primidona/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...