Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067685

RESUMO

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum ß-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25-50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antivirais/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/química , Candida albicans/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , SARS-CoV-2/efeitos dos fármacos
2.
J Extracell Vesicles ; 9(1): 1808281, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32939236

RESUMO

Zika virus (ZIKV) is mainly transmitted via mosquitos, but human-to-human transmissions also occur. The virus is shed into various body fluids including saliva, which represents a possible source of viral transmission. Thus, we here explored whether human saliva affects ZIKV infectivity. We found that physiological concentrations of pooled saliva dose-dependently inhibit ZIKV infection of monkey and human cells by preventing viral attachment to target cells. The anti-ZIKV activity in saliva could not be abrogated by boiling, suggesting the antiviral factor is not a protein. Instead, we found that purified extracellular vesicles (EVs) from saliva inhibit ZIKV infection. Salivary EVs (saEVs) express typical EV markers such as tetraspanins CD9, CD63 and CD81 and prevent ZIKV attachment to and infection of target cells at concentrations that are naturally present in saliva. The anti-ZIKV activity of saliva is conserved but the magnitude of inhibition varies between individual donors. In contrast to ZIKV, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), predominantly spreading via respiratory droplets, is not affected by saliva or saEVs. Our findings provide a plausible explanation for why ZIKV transmission via saliva, i.e. by deep kissing have not been recorded and establish a novel oral innate immune defence mechanism against some viral pathogens.

3.
J Chem Inf Model ; 60(7): 3331-3335, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32584031

RESUMO

We present an implementation of the scaffold network in the open source cheminformatics toolkit RDKit. Scaffold networks have been introduced in the literature as a powerful method to navigate and analyze large screening data sets in medicinal chemistry. Such a network can be created by iteratively applying predefined fragmentation rules to the investigated set of small molecules and by linking the produced fragments according to their descendence. This procedure results in a network graph, where the nodes correspond to the fragments and the edges correspond to the operations producing one fragment from another. In extension to the scaffold network implementations suggested in the literature, the presented implementation in RDKit allows an enhanced flexibility in terms of customizing the fragmentation rules and enables the inclusion of atom- and bond-generic scaffolds into the network. The output, providing node and edge information on the network, enables a simple and elegant navigation through the network, laying the basis to organize and better understand the data set being investigated.


Assuntos
Quimioinformática , Software , Química Farmacêutica
4.
J Chem Inf Model ; 60(6): 2888-2902, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32374165

RESUMO

We investigate different automated approaches for the classification of chemical series in early drug discovery, with the aim of closely mimicking human chemical series conception. Chemical series, which are commonly defined by hand-drawn scaffolds, organize datasets in drug discovery projects. Often, they form the basis for further project decisions. To trace and evaluate these decisions in historic and ongoing projects, it is important to know or reconstruct chemical series. There is not a unique correct definition of chemical series, and the human definition certainly involves a subjective bias. Hence, we first develop quality metrics for the chemical series definitions, evaluating the size and specificity of chemical series. These metrics are applied to categorize human series definitions and implemented in automated classification approaches. For the automated classification of chemical series, we test different fragmentation and similarity-based clustering algorithms and apply different approaches to infer series definitions from these clusters or sets of fragments. We benchmark the classification results against human-defined series from 30 internal projects. The best results in reproducing the composition of human-defined series are achieved when applying UPGMA (unweighted pair group method with arithmetic mean) clustering to the project dataset and calculating maximum common substructures of the clusters as series definitions. We evaluate this approach in more detail on a public dataset and assess its robustness by 10-fold cross-validation, each time sampling 40% of the dataset. Through these benchmarking and validation experiments, we show that the proposed automated approach is able to accurately and robustly identify human-defined series, which comply with a certain, predefined level of specificity and size. Suggesting a thoroughly tested algorithm for series classification, as well as quality metrics for series and several benchmarking approaches, this work lays the foundation for further analysis of project decisions, and it offers an enhanced understanding of the properties of human-defined chemical series.


Assuntos
Algoritmos , Benchmarking , Análise por Conglomerados , Humanos
5.
Front Microbiol ; 11: 508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328038

RESUMO

The placenta acts as physical and immunological barrier against the transmission of viruses and bacteria from mother to fetus. However, the specific mechanisms by which the placenta protects the developing fetus from viral and bacterial pathogens are poorly understood. To identify placental peptides and small proteins protecting from viral and bacterial infections, we generated a peptide library from 10 kg placenta by chromatographic means. Screening the resulting 250 fractions against Herpes-Simplex-Virus 2 (HSV-2), which is rarely transmitted through the placenta, in a cell-based system identified two adjacent fractions with significant antiviral activity. Further rounds of chromatographic purification and anti-HSV-2 testing allowed to purify the bioactive peptide. Mass spectrometry revealed the presence of a 36-mer derived from the C-terminal region of the hemoglobin ß subunit. The purified and corresponding chemically synthesized peptide, termed HBB(112-147), inhibited HSV-2 infection in a dose-dependent manner, with a mean IC50 in the median µg/ml range. Full-length hemoglobin tetramer had no antiviral activity. HBB(112-147) did not impair infectivity by direct targeting of the virions but prevented HSV-2 infection at the cell entry level. The peptide was inactive against Human Immunodeficiency Virus Type 1, Rubella and Zika virus infection, suggesting a specific anti-HSV-2 mechanism. Notably, HBB(112-147) has previously been identified as broad-spectrum antibacterial agent. It is abundant in placenta, reaching concentrations between 280 and 740 µg/ml, that are well sufficient to inhibit HSV-2 and prototype Gram-positive and -negative bacteria. We here additionally show, that HBB(112-147) also acts potently against Pseudomonas aeruginosa strains (including a multi-drug resistant strain) in a dose dependent manner, while full-length hemoglobin is inactive. Interestingly, the antibacterial activity of HBB(112-147) was increased under acidic conditions, a hallmark of infection and inflammatory conditions. Indeed, we found that HBB(112-147) is released from the hemoglobin precursor by Cathepsin D and Napsin A, acidic proteases highly expressed in placental and other tissues. We propose that upon viral or bacterial infection, the abundant hemoglobin precursor is proteolytically processed to release HBB(112-147), a broadly active antimicrobial innate immune defense peptide.

6.
Arch Toxicol ; 93(11): 3153-3167, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31641809

RESUMO

Despite the frequent infection of agricultural crops by Alternaria spp., their toxic secondary metabolites and potential food contaminants lack comprehensive metabolic characterization. In this study, we investigated their bioavailability, metabolism, and excretion in vivo. A complex Alternaria culture extract (50 mg/kg body weight) containing 11 known toxins and the isolated lead toxin altertoxin II (0.7 mg/kg body weight) were administered per gavage to groups of 14 Sprague Dawley rats each. After 3 h and 24 h, plasma, urine and feces were collected to determine toxin recoveries. For reliable quantitation, an LC-MS/MS method for the simultaneous detection of 20 Alternaria toxins and metabolites was developed and optimized for either biological matrix. The obtained results demonstrated efficient excretion of alternariol (AOH) and its monomethyl ether (AME) via feces (> 89%) and urine (> 2.6%) after 24 h, while the majority of tenuazonic acid was recovered in urine (20 and 87% after 3 and 24 h, respectively). Moreover, modified forms of AOH and AME were identified in urine and fecal samples confirming both, mammalian phase-I (4-hydroxy-AOH) and phase-II (sulfates) biotransformation in vivo. Despite the comparably high doses, perylene quinones were recovered only at very low levels (altertoxin I, alterperylenol, < 0.06% in urine and plasma, < 5% in feces) or not at all (highly genotoxic, epoxide-holding altertoxin II, stemphyltoxin III). Interestingly, altertoxin I was detected in all matrices of rats receiving altertoxin II and suggests enzymatic de-epoxidation in vivo. In conclusion, the present study contributes valuable information to advance our understanding of the emerging Alternaria mycotoxins and their relevance on food safety.


Assuntos
Alternaria/química , Benzo(a)Antracenos/metabolismo , Micotoxinas/metabolismo , Alternaria/crescimento & desenvolvimento , Animais , Benzo(a)Antracenos/sangue , Benzo(a)Antracenos/isolamento & purificação , Benzo(a)Antracenos/urina , Disponibilidade Biológica , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida , Ingestão de Alimentos/efeitos dos fármacos , Fezes/química , Contaminação de Alimentos/análise , Limite de Detecção , Masculino , Taxa de Depuração Metabólica , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Micotoxinas/sangue , Micotoxinas/isolamento & purificação , Micotoxinas/urina , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Distribuição Tecidual
7.
Arch Toxicol ; 93(10): 3021-3031, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31559443

RESUMO

Alternaria molds can produce a variety of different mycotoxins, often resulting in food contamination with chemical mixtures, posing a challenge for risk assessment. Some of these metabolites possess estrogenic properties, an effect whose toxicological relevance is questioned in the light of the strong genotoxic and cytotoxic properties of co-occurring toxins. Thus, we tested a complex extract from A. alternata for estrogenic properties in Ishikawa cells. By assessing alkaline phosphatase activity, we did not observe estrogen receptor (ER) activation at non-cytotoxic concentrations (≤ 10 µg/ml). Furthermore, an extract stripped of highly genotoxic perylene quinones also did not mediate estrogenic effects, despite diminished genotoxic properties in the comet assay (≥ 10 µg/ml). Interestingly, both extracts impaired the estrogenicity of 17ß-estradiol (E2) at non-cytotoxic concentrations (5-10 µg/ml), indicating anti-estrogenic effects which could not be explained by the presence of known mycoestrogens. A mechanism for this unexpected result might be the activation of the aryl hydrocarbon receptor (AhR) by Alternaria metabolites, as indicated by the induction of CYP1A1 transcription. While a direct influence on the metabolism of E2 could not be confirmed by LC-MS/MS, literature describing a direct interplay of the AhR with estrogenic pathways points to a corresponding mode of action. Taken together, the present study indicates AhR-mediated anti-estrogenic effects as a novel mechanism of naturally co-occurring Alternaria toxin mixtures. Furthermore, our results confirm their genotoxic activity and raise questions about the contribution of still undiscovered metabolites to toxicological properties.


Assuntos
Alternaria/metabolismo , Antagonistas de Estrogênios/toxicidade , Micotoxinas/toxicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Estradiol/metabolismo , Antagonistas de Estrogênios/administração & dosagem , Antagonistas de Estrogênios/isolamento & purificação , Humanos , Mutagênicos/administração & dosagem , Mutagênicos/isolamento & purificação , Mutagênicos/toxicidade , Micotoxinas/administração & dosagem , Micotoxinas/isolamento & purificação , Receptores de Hidrocarboneto Arílico/metabolismo
8.
Adv Sci (Weinh) ; 6(6): 1802095, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30937274

RESUMO

Macromolecular prodrugs (MP) built on the natural phosphodiester and deoxyribose backbone are developed using marketed antiviral nucleoside analogues. These MP are synthesized using automated synthesis, have defined molecular composition, and have a natural mechanism for drug release. These unique attributes, coupled to the efficient cell entry and potent antiviral effects, position the prodrugs scaffolded on nucleic acids favorably for translational studies.

9.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626669

RESUMO

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital infections that can lead to severe birth defects. Although HCMV is frequently detected in semen and thus is potentially sexually transmitted, the role of semen in HCMV transmission is largely unclear. Here we describe that human seminal plasma (SP; the cell-free supernatant of semen) inhibits HCMV infection. The inhibition of HCMV infection was dose dependent and effective for different cell types, virus strains, and semen donors. This inhibitory effect was specific for HCMV, as herpes simplex virus 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1) infections were enhanced by SP. Mechanistically, SP inhibited infection by interfering with the attachment of virions to cells most likely via an interaction with the trimeric glycoprotein complex gH/gL/gO. Together, our findings suggest that semen contains a factor that potentially limits sexual transmission of HCMV.IMPORTANCE The role of semen in sexual transmission of human cytomegalovirus (HCMV) is currently unclear. This is surprising, as HCMV is frequently detected in this body fluid and infection is of high danger for neonates and pregnant women. In this study, we found that seminal plasma (SP) dose dependently inhibited HCMV infection. The infection inhibition was specific for HCMV, as other viruses, such as human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus 2 (HSV-2), were not inhibited by SP. SP must contain a soluble, heat-resistant factor that limits attachment of HCMV particles to cells, probably by interaction with the trimeric glycoprotein complex gH/gL/gO. This novel virus-host interaction could possibly limit transmission of HCMV via semen during sexual intercourse.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Sêmen/imunologia , Sêmen/virologia , Células Cultivadas , Infecções por Citomegalovirus/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Fibroblastos/imunologia , Fibroblastos/virologia , Humanos , Vírion/imunologia
10.
J Control Release ; 294: 298-310, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30552954

RESUMO

Albumin is a highly successful tool of drug delivery providing drastically extended body and blood residence time for the associated cargo, but it only traffics single drug copies at a time. In turn, macromolecular prodrugs (MP) are advantaged in carrying a high drug payload but offering only a modest extension of residence time to the conjugated drugs. In this work, we engineer MP to contain terminal groups that bind to albumin via non-covalent association and reveal that this facile measure affords a significant protraction for the associated polymers. This methodology is applied to MP of acyclovir, a successful drug against herpes simplex virus infection but with poor pharmacokinetics. Resulting albumin-affine MP were efficacious agents against herpes simplex virus type 2 (HSV-2) both in vitro and in vivo. In the latter case, sub-cutaneous administration of MP resulted in local (vaginal) antiviral effects and a systemic protection. Presented benefits of non-covalent association with albumin are readily transferrable to a wide variety of MP in development for drug delivery as anticancer, anti-inflammatory, and anti-viral measures.


Assuntos
Aciclovir/administração & dosagem , Albuminas/metabolismo , Antivirais/administração & dosagem , Herpes Simples/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Animais , Feminino , Células HeLa , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Injeções Subcutâneas , Camundongos Endogâmicos BALB C , Fosfatidilgliceróis/administração & dosagem , Polietilenoglicóis/administração & dosagem , Ácidos Polimetacrílicos/administração & dosagem , Ducha Vaginal
11.
Nat Commun ; 9(1): 2207, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880824

RESUMO

Zika virus (ZIKV) causes severe birth defects and can be transmitted via sexual intercourse. Semen from ZIKV-infected individuals contains high viral loads and may therefore serve as an important vector for virus transmission. Here we analyze the effect of semen on ZIKV infection of cells and tissues derived from the anogenital region. ZIKV replicates in all analyzed cell lines, primary cells, and endometrial or vaginal tissues. However, in the presence of semen, infection by ZIKV and other flaviviruses is potently inhibited. We show that semen prevents ZIKV attachment to target cells, and that an extracellular vesicle preparation from semen is responsible for this anti-ZIKV activity. Our findings suggest that ZIKV transmission is limited by semen. As such, semen appears to serve as a protector against sexual ZIKV transmission, despite the availability of highly susceptible cells in the anogenital tract and high viral loads in this bodily fluid.


Assuntos
Sêmen/imunologia , Doenças Virais Sexualmente Transmissíveis/transmissão , Ligação Viral , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Vesículas Extracelulares/imunologia , Feminino , Fibroblastos , Genitália/citologia , Voluntários Saudáveis , Humanos , Concentração Inibidora 50 , Masculino , Cultura Primária de Células , RNA Viral/isolamento & purificação , Sêmen/citologia , Sêmen/virologia , Doenças Virais Sexualmente Transmissíveis/virologia , Células Vero , Carga Viral/imunologia , Replicação Viral/imunologia , Zika virus/isolamento & purificação , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
12.
Antiviral Res ; 152: 26-35, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29428508

RESUMO

Ebola (EBOV) and Zika viruses (ZIKV) are responsible for recent global health threats. As no preventive vaccines or antiviral drugs against these two re-emerging pathogens are available, we evaluated whether the molecular tweezer CLR01 may inhibit EBOV and ZIKV infection. This small molecule has previously been shown to inactivate HIV-1 and herpes viruses through a selective interaction with lipid-raft-rich regions in the viral envelope, which results in membrane disruption and loss of infectivity. We found that CLR01 indeed blocked infection of EBOV and ZIKV in a dose-dependent manner. The tweezer inhibited infection of epidemic ZIKV strains in cells derived from the anogenital tract and the central nervous system, and remained antivirally active in the presence of semen, saliva, urine and cerebrospinal fluid. Our findings show that CLR01 is a broad-spectrum inhibitor of enveloped viruses with prospects as a preventative microbicide or antiviral agent.


Assuntos
Antivirais/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Ebolavirus/efeitos dos fármacos , Organofosfatos/farmacologia , Zika virus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Ebolavirus/genética , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Humanos , Células Vero , Replicação Viral/efeitos dos fármacos , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...