Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 57: 58-64, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30738532

RESUMO

BACKGROUND: In scanned proton beam therapy systematic deviations in spot size at iso-center can occur as a result of changes in the beam-line optics. There is currently no general guideline of the spot size accuracy required clinically. In this work we quantify treatment plan robustness to systematic spot size variations as a function of spot size and spot spacing, and we suggest guidelines for tolerance levels for spot size variations. METHODS: Through perturbation of spot size in treatment plans for 7 patients and a phantom, we evaluated the dose impact of systematic spot size variations of 5% up to 50%. We investigated the dependence on nominal spot size by studying scenarios with small, medium and large spot sizes for various inter-spot spacings. To come to tolerance levels, we used the Γ passing rate and dose-volume-histograms. RESULTS: Limits on spot size accuracy were extracted for 8 sites, 3 different spot sizes and 3 different inter-spot spacings. While the allowable spot size variation strongly depends on the spot size, the inter-spot spacing turned out to be only of limited influence. CONCLUSIONS: Plan robustness to spot size variations strongly depend on spot size, with small spot plans being much more robust than larger spots plans. Inter-spot spacing did not influence plan robustness. Combining our results with existing literature, we propose limits of ±25%, ±20% and ±10% of the spot width σ, for spots with σ of 2.5, 5.0 and 10 mm in proton therapy spot scanning facilities, respectively.


Assuntos
Terapia com Prótons/métodos , Doses de Radiação , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Phys Med ; 30(5): 559-69, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24786664

RESUMO

GOAL: Proton treatment monitoring with Positron-Emission-Tomography (PET) is based on comparing measured and Monte Carlo (MC) predicted ß(+) activity distributions. Here we present PET ß(+) activity data and MC predictions both during and after proton irradiation of homogeneous PMMA targets, where protons were extracted from a cyclotron. METHODS AND MATERIALS: PMMA phantoms were irradiated with 62 MeV protons extracted from the CATANA cyclotron. PET activity data were acquired with a 10 × 10 cm(2) planar PET system and compared with predictions from the FLUKA MC generator. We investigated which isotopes are produced and decay during irradiation, and compared them to the situation after irradiation. For various irradiation conditions we compared one-dimensional activity distributions of MC and data, focussing on Δw50%, i.e., the distance between the 50% rise and 50% fall-off position. RESULTS: The PET system is able to acquire data during and after cyclotron irradiation. For PMMA phantoms the difference between the FLUKA MC prediction and our data in Δw50% is less than 1 mm. The ratio of PET activity events during and after irradiation is about 1 in both data and FLUKA, when equal time-frames are considered. Some differences are observed in profile shape. CONCLUSION: We found a good agreement in Δw50% and in the ratio between beam-on and beam-off activity between the PET data and the FLUKA MC predictions in all irradiation conditions.


Assuntos
Ciclotrons , Método de Monte Carlo , Tomografia por Emissão de Pósitrons , Terapia com Prótons/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Partículas beta/uso terapêutico , Imagens de Fantasmas , Polimetil Metacrilato
3.
Phys Med Biol ; 58(19): 6969-83, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24029721

RESUMO

This study investigates whether 'pencil beam resampling', i.e. iterative selection and weight optimization of randomly placed pencil beams (PBs), reduces optimization time and improves plan quality for multi-criteria optimization in intensity-modulated proton therapy, compared with traditional modes in which PBs are distributed over a regular grid. Resampling consisted of repeatedly performing: (1) random selection of candidate PBs from a very fine grid, (2) inverse multi-criteria optimization, and (3) exclusion of low-weight PBs. The newly selected candidate PBs were added to the PBs in the existing solution, causing the solution to improve with each iteration. Resampling and traditional regular grid planning were implemented into our in-house developed multi-criteria treatment planning system 'Erasmus iCycle'. The system optimizes objectives successively according to their priorities as defined in the so-called 'wish-list'. For five head-and-neck cancer patients and two PB widths (3 and 6 mm sigma at 230 MeV), treatment plans were generated using: (1) resampling, (2) anisotropic regular grids and (3) isotropic regular grids, while using varying sample sizes (resampling) or grid spacings (regular grid). We assessed differences in optimization time (for comparable plan quality) and in plan quality parameters (for comparable optimization time). Resampling reduced optimization time by a factor of 2.8 and 5.6 on average (7.8 and 17.0 at maximum) compared with the use of anisotropic and isotropic grids, respectively. Doses to organs-at-risk were generally reduced when using resampling, with median dose reductions ranging from 0.0 to 3.0 Gy (maximum: 14.3 Gy, relative: 0%-42%) compared with anisotropic grids and from -0.3 to 2.6 Gy (maximum: 11.4 Gy, relative: -4%-19%) compared with isotropic grids. Resampling was especially effective when using thin PBs (3 mm sigma). Resampling plans contained on average fewer PBs, energy layers and protons than anisotropic grid plans and more energy layers and protons than isotropic grid plans. In conclusion, resampling resulted in improved plan quality and in considerable optimization time reduction compared with traditional regular grid planning.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Anisotropia , Humanos , Órgãos em Risco/efeitos da radiação , Neoplasias Orofaríngeas/radioterapia , Terapia com Prótons/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA