Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1054: 95-103, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30712597

RESUMO

The precise quantification of mercury (Hg) stable isotope compositions in low concentration or dilute samples poses analytical challenges due to Hg mass limitations. Common Hg pre-concentration procedures require extended processing times, making rapid Hg stable isotope measurements challenging. Here we present a modified pre-concentration method that combines commonly used Hg reduction and gold trap amalgamation followed by semi-rapid thermal desorption (less than 1 h) and chemical trapping. This custom designed system was demonstrated to perform adequately on multiple trapping matrices including a new bromine monochloride (BrCl) wet oxidant trap (40% 3HNO3:BrCl), capable of trapping consistently in 2 mL volume over a wide range of Hg masses (5-200 ng). The procedure was also shown to work effectively on natural matrices, waters and sediments, producing comparable isotope results to the direct digestion analyses. Here, we present a method that can effectively triple sample throughput in comparison to traditional procedures, and also access lower concentration matrices without compromising the accuracy or precision of Hg isotope measurements.

2.
Arch Environ Contam Toxicol ; 63(2): 262-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22552852

RESUMO

Based on a laboratory experiment, we estimated the net trophic transfer efficiency of methylmercury to lake trout Salvelinus namaycush from its prey to be equal to 76.6 %. Under the assumption that gross trophic transfer efficiency of methylmercury to lake trout from its prey was equal to 80 %, we estimated that the rate at which lake trout eliminated methylmercury was 0.000244 day(-1). Our laboratory estimate of methylmercury elimination rate was 5.5 times lower than the value predicted by a published regression equation developed from estimates of methylmercury elimination rates for fish available from the literature. Thus, our results, in conjunction with other recent findings, suggested that methylmercury elimination rates for fish have been overestimated in previous studies. In addition, based on our laboratory experiment, we estimated that the net trophic transfer efficiency of inorganic mercury to lake trout from its prey was 63.5 %. The lower net trophic transfer efficiency for inorganic mercury compared with that for methylmercury was partly attributable to the greater elimination rate for inorganic mercury. We also found that the efficiency with which lake trout retained either methylmercury or inorganic mercury from their food did not appear to be significantly affected by the degree of their swimming activity.


Assuntos
Cadeia Alimentar , Contaminação de Alimentos , Mercúrio/farmacocinética , Compostos de Metilmercúrio/farmacocinética , Truta/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Biotransformação , Modelos Biológicos , Análise de Regressão , Salmonidae , Natação
3.
Environ Pollut ; 154(1): 124-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18242808

RESUMO

It is widely recognized that wetlands, especially those rich in organic matter and receiving appreciable atmospheric mercury (Hg) inputs, are important sites of methylmercury (MeHg) production. Extensive wetlands in the southeastern United States have many ecosystem attributes ideal for promoting high MeHg production rates; however, relatively few mercury cycling studies have been conducted in these environments. We conducted a landscape scale study examining Hg cycling in coastal Louisiana (USA) including four field trips conducted between August 2003 and May 2005. Sites were chosen to represent different ecosystem types, including: a large shallow eutrophic estuarine lake (Lake Pontchartrain), three rivers draining into the lake, a cypress-tupelo dominated freshwater swamp, and six emergent marshes ranging from a freshwater marsh dominated by Panicum hemitomon to a Spartina alterniflora dominated salt marsh close to the Gulf of Mexico. We measured MeHg and total Hg (THg) concentrations, and ancillary chemical characteristics, in whole and filtered surface water, and filtered porewater. Overall, MeHg concentrations were greatest in surface water of freshwater wetlands and lowest in the profundal (non-vegetated) regions of the lake and river mainstems. Concentrations of THg and MeHg in filtered surface water were positively correlated with the highly reactive, aromatic (hydrophobic organic acid) fraction of dissolved organic carbon (DOC). These results suggest that DOC plays an important role in promoting the mobility, transport and bioavailability of inorganic Hg in these environments. Further, elevated porewater concentrations in marine and brackish wetlands suggest coastal wetlands along the Gulf Coast are key sites for MeHg production and may be a principal source of MeHg to foodwebs in the Gulf of Mexico. Examining the relationships among MeHg, THg, and DOC across these multiple landscape types is a first step in evaluating possible links between key zones for Hg(II)-methylation and the bioaccumulation of mercury in the biota inhabiting the Gulf of Mexico region.


Assuntos
Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Carbono/análise , Ecossistema , Monitoramento Ambiental/métodos , Louisiana , Mercúrio/análise , Solubilidade
4.
Environ Pollut ; 154(1): 116-23, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18222023

RESUMO

Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5mg L(-1). These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg.


Assuntos
Carbono , Eucariotos/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Bioensaio , Disponibilidade Biológica , Monitoramento Ambiental/métodos , Água Doce , Substâncias Húmicas , Isótopos de Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Chuva , Rios , Solubilidade
5.
Sci Total Environ ; 367(1): 354-66, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16434084

RESUMO

Atmospheric concentrations of elemental mercury (Hg(0)), reactive gaseous Hg (RGM), and particulate Hg (pHg) concentrations were measured in Yellowstone National Park (YNP), U.S.A. using high resolution, real time atmospheric mercury analyzers (Tekran 2537A, 1130, and 1135). A survey of Hg(0) concentrations at various locations within YNP showed that concentrations generally reflect global background concentrations of 1.5-2.0 ng m(-3), but a few specific locations associated with concentrated geothermal activity showed distinctly elevated Hg(0) concentrations (about 9.0 ng m(-3)). At the site of intensive study located centrally in YNP (Canyon Village), Hg(0) concentrations did not exceed 2.5 ng m(-3); concentrations of RGM were generally below detection limits of 0.88 pg m(-3) and never exceeded 5 pg m(-3). Concentrations of pHg ranged from below detection limits to close to 30 pg m(-3). RGM and pHg concentrations were not correlated with any criteria gases (SO(2), NO(x), O(3)); however pHg was weakly correlated with the concentration of atmospheric particles. We investigated three likely sources of Hg at the intensive monitoring site: numerous geothermal features scattered throughout YNP, re-suspended soils, and wildfires near or in YNP. We examined relationships between the chemical properties of aerosols (as measured using real time, single particle mass spectrometry; aerosol time-of-flight mass spectrometer; ATOFMS) and concentrations of atmospheric pHg. Based on the presence of particles with distinct chemical signatures of the wildfires, and the absence of signatures associated with the other sources, we concluded that wildfires in the park were the main source of aerosols and associated pHg to our sampling site.


Assuntos
Poluentes Atmosféricos/análise , Ar/análise , Monitoramento Ambiental , Mercúrio/análise , Aerossóis , Ar/normas , Gases , Tamanho da Partícula , Estados Unidos
6.
Ground Water ; 39(4): 485-91, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11447848

RESUMO

Trace metal clean sampling and analysis techniques were used to examine the temporal patterns of Hg, Cu, and Zn concentrations in shallow ground water, and the relationships between metal concentrations in ground water and in a hydrologically connected river. Hg, Cu, and Zn concentrations in ground water ranged from 0.07 to 4.6 ng L-1, 0.07 to 3.10 micrograms L-1, and 0.17 to 2.18 micrograms L-1, respectively. There was no apparent seasonal pattern in any of the metal concentrations. Filtrable Hg, Cu, and Zn concentrations in the North Branch of the Milwaukee River ranged from below the detection limit to 2.65 ng Hg L-1, 0.51 to 4.30 micrograms Cu L-1, and 0.34 to 2.33 micrograms Zn L-1. Thus, metal concentrations in ground water were sufficiently high to account for a substantial fraction of the filtrable trace metal concentration in the river. Metal concentrations in the soil ranged from 8 to 86 ng Hg g-1, 10 to 39 micrograms Cu g-1, and 15 to 84 micrograms Zn g-1. Distribution coefficients, KD, in the aquifer were 7900, 22,000, and 23,000 L kg-1 for Hg, Cu, and Zn, respectively. These values were three to 40 times smaller than KD values observed in the Milwaukee River for suspended particulate matter.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Oligoelementos/análise , Poluentes da Água/análise , Monitoramento Ambiental , Filtração , Tamanho da Partícula , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA