Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(8): 1908-1913, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30939019

RESUMO

Tetracene is an archetypal material undergoing singlet fission-the generation of a pair of triplet excitons from one singlet exciton. Here, using time-resolved electron spin resonance, we show how the spin dynamics in tetracene crystals are influenced by temperature and morphology. Upon cooling from 300 to 200 K, we observe a switch between singlet fission and intersystem crossing generated triplets, manifesting as an inversion in transient spin polarization. We extract a spin dephasing time of approximately 40 ns for fission-generated triplets at room temperature, nearly 100 times shorter than the dephasing time that we measure for triplets localized on isolated tetracene molecules. These results highlight the importance of morphology and thermal activation in singlet fission systems.

2.
Phys Chem Chem Phys ; 20(46): 29142-29151, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30426977

RESUMO

Crystalline surface-anchored metal-organic framework (SURMOF) thin films made from porphyrin-based organic linkers have recently been used in both photon upconversion and photovoltaic applications. While these studies showed promising results, the question of photostability in this organic-inorganic hybrid material has to be investigated before applications can be considered. Here, we combine steady-state photoluminescence, transient absorption, and time-resolved electron paramagnetic resonance spectroscopy to examine the effects of prolonged illumination on a palladium-porphyrin based SURMOF thin film. We find that phototreatment leads to a change in the material's photoresponse caused by the creation of stable products of photodecomposition - likely chlorin - inside the SURMOF structure. When the mobile triplet excitons encounter such a defect site, a short-lived (80 ns) cation-anion radical pair can be formed by electron transfer, wherein the charges are localized at a porphyrin and the photoproduct site, respectively.

3.
J Magn Reson ; 282: 10-17, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28686953

RESUMO

Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

4.
Phys Chem Chem Phys ; 19(5): 3627-3639, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094360

RESUMO

We investigate the delocalization of holes in the semicrystalline conjugated polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT) by directly measuring the hyperfine coupling between photogenerated polarons and bound nuclear spins using electron nuclear double resonance spectroscopy. An extrapolation of the corresponding oligomer spectra reveals that charges tend to delocalize over 4.0-4.8 nm with delocalization strongly dependent on molecular order and crystallinity of the PBTTT polymer thin films. Density functional theory calculations of hyperfine couplings confirm that long-range corrected functionals appropriately describe the change in coupling strength with increasing oligomer size and agree well with the experimentally measured polymer limit. Our discussion presents general guidelines illustrating the various pitfalls and opportunities when deducing polaron localization lengths from hyperfine coupling spectra of conjugated polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA