Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 46(1): 41-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18181863

RESUMO

The leakage of pollutants from agricultural lands to aquifers has increased greatly, driven by increasing fertilizer and pesticide use. Because this increase is recent, ground water pollutant concentrations, loads, and exports may also be increasing as pollutants penetrate more deeply into aquifers. We established in an aquifer profile a ground water recharge and pollutant leakage chronology in an agricultural landscape where 30 m of till blankets a 57-m thick sandstone aquifer. Pollutant concentrations increased from older ground water (1963) at the aquifer base to younger ground water (1985) at its top, a signal of increasing pollutant leakage. Nitrate-N increased from 0.9 to 13.2 mg/L, implying that leakage increased from 1.9 to 16.5 kg/ha/year. Nitrate load and export could increase from 130% to 230% before reaching a steady state in 20 to 40 years. Chloride increases were similar. Pesticide residues alachlor ethane sulfonic acid (ESA), metolachlor ESA, and atrazine residues partially penetrated the aquifer profile. Their concentration-age-date patterns exhibited an initial increase and then a leveling corresponding to the timing of product adoption and leveling of demand. Unlike NO(3), projecting pesticide residue steady states is complicated by the phasing in and out of pesticide products over time; for example, neither alachlor nor atrazine is currently used in the area, and newer products, which have not had time to transit to the aquifer, have been adopted. The circumstances that resulted in the lack of a pollutant steady state are not rare; thus, the lack of steady states in agricultural region aquifers may not be uncommon.


Assuntos
Agricultura , Nitratos/análise , Resíduos de Praguicidas/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Cloretos/análise , Monitoramento Ambiental , Nitrogênio/análise , Wisconsin
2.
J Environ Qual ; 30(4): 1176-84, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11476494

RESUMO

Groundwater pollution and associated effects on drinking water have increased with the expansion of irrigated agriculture in north-central U.S. sand plains. Controlling this pollution requires an ability to measure and predict pollutant loading by specific agricultural systems. We measured NO3 and Cl loading to groundwater beneath a Wisconsin central sand plain irrigated vegetable field using both a budget method and a new monitoring-based method. By relying on frequent monitoring of shallow groundwater, the new method overcomes some limitations of other methods. Monitoring-based and budget methods agreed well, and indicated that loading to groundwater was 165 kg ha(-1) NO3-N and 111 kg ha(-1) Cl for sweet corn (Zea mays L.) in 1992, and 228 kg ha(-1) NO3-N and 366 kg ha(-1) Cl for potato (Solanum tuberosum L.) in 1993. Nitrate N loading was 56 to 60% of available N, or 66 to 70% of fertilizer N. Sweet corn NO3 loading was about typical for this region, but potato NO3 loading was probably 50% greater than typical because heavy rains provoked extra fertilizer application. Our results imply that typical NO3-N loading would be 119 kg ha(-1) for sweet corn and 203 kg ha(-1) for potato, even with strict adherence to University Extension fertilizer recommendations. To keep average groundwater NO3-N within the 10 mg L(-1) U.S. drinking water standard, each irrigated vegetable field would need to be offset by five to eight times as much land supplying NO3-free groundwater recharge.


Assuntos
Agricultura , Cloretos/análise , Modelos Teóricos , Nitratos/análise , Poluentes do Solo/análise , Poluentes da Água/análise , Abastecimento de Água , Fertilizantes , Previsões , Chuva , Verduras , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA