Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760566

RESUMO

CRISPR perturbation methods are limited in their ability to study non-coding elements and genetic interactions. In this study, we developed a system for bidirectional epigenetic editing, called CRISPRai, in which we apply activating (CRISPRa) and repressive (CRISPRi) perturbations to two loci simultaneously in the same cell. We developed CRISPRai Perturb-seq by coupling dual perturbation gRNA detection with single-cell RNA sequencing, enabling study of pooled perturbations in a mixed single-cell population. We applied this platform to study the genetic interaction between two hematopoietic lineage transcription factors, SPI1 and GATA1, and discovered novel characteristics of their co-regulation on downstream target genes, including differences in SPI1 and GATA1 occupancy at genes that are regulated through different modes. We also studied the regulatory landscape of IL2 (interleukin-2) in Jurkat T cells, primary T cells and chimeric antigen receptor (CAR) T cells and elucidated mechanisms of enhancer-mediated IL2 gene regulation. CRISPRai facilitates investigation of context-specific genetic interactions, provides new insights into gene regulation and will enable exploration of non-coding disease-associated variants.

2.
Cell ; 187(3): 733-749.e16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306984

RESUMO

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.


Assuntos
Autoanticorpos , Doenças Autoimunes , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Autoanticorpos/genética , Doenças Autoimunes/genética , Autoimunidade/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Caracteres Sexuais
3.
Nat Commun ; 14(1): 2300, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085539

RESUMO

Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains ('neo-TADs') caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.


Assuntos
Ependimoma , Recidiva Local de Neoplasia , Criança , Humanos , Pré-Escolar , Recidiva Local de Neoplasia/genética , Cromossomos , Mapeamento Cromossômico , Ependimoma/genética , Ependimoma/patologia , Genoma , Cromatina/genética
4.
Cell Genom ; 2(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36277849

RESUMO

Genome-wide association studies (GWASs) of eye disorders have identified hundreds of genetic variants associated with ocular disease. However, the vast majority of these variants are noncoding, making it challenging to interpret their function. Here we present a joint single-cell atlas of gene expression and chromatin accessibility of the adult human retina with more than 50,000 cells, which we used to analyze single-nucleotide polymorphisms (SNPs) implicated by GWASs of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2 macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict noncoding SNPs with causal roles in eye disease, assess SNP impact on transcription factor binding, and define their known and novel target genes. Our efforts nominate pathogenic SNP-target gene interactions for multiple vision disorders and provide a potentially powerful resource for interpreting noncoding variation in the eye.

5.
Proc Natl Acad Sci U S A ; 119(22): e2201883119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617427

RESUMO

Polycomb-group proteins play critical roles in gene silencing through the deposition of histone H3 lysine 27 trimethylation (H3K27me3) and chromatin compaction. This process is essential for embryonic stem cell (ESC) pluripotency, differentiation, and development. Polycomb repressive complex 2 (PRC2) can both read and write H3K27me3, enabling progressive spreading of H3K27me3 on the linear genome. Long-range Polycomb-associated DNA contacts have also been described, but their regulation and role in gene silencing remain unclear. Here, we apply H3K27me3 HiChIP, a protein-directed chromosome conformation method, and optical reconstruction of chromatin architecture to profile long-range Polycomb-associated DNA loops that span tens to hundreds of megabases across multiple topological associated domains in mouse ESCs and human induced pluripotent stem cells. We find that H3K27me3 loop anchors are enriched for Polycomb nucleation points and coincide with key developmental genes. Genetic deletion of H3K27me3 loop anchors results in disruption of spatial contact between distant loci and altered H3K27me3 in cis, both locally and megabases away on the same chromosome. In mouse embryos, loop anchor deletion leads to ectopic activation of the partner gene, suggesting that Polycomb-associated loops control gene silencing during development. Further, we find that alterations in PRC2 occupancy resulting from an RNA binding­deficient EZH2 mutant are accompanied by loss of Polycomb-associated DNA looping. Together, these results suggest PRC2 uses RNA binding to enhance long-range chromosome folding and H3K27me3 spreading. Developmental gene loci have unique roles in Polycomb spreading, emerging as important architectural elements of the epigenome.


Assuntos
Cromossomos , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Histonas , Complexo Repressor Polycomb 2 , Animais , Imunoprecipitação da Cromatina/métodos , Cromossomos/química , Cromossomos/metabolismo , Embrião de Mamíferos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Conformação de Ácido Nucleico , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo
6.
Nature ; 600(7890): 731-736, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819668

RESUMO

Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.


Assuntos
Neoplasias , Proteínas Nucleares , Azepinas/farmacologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Proteínas Nucleares/genética , Oncogenes/genética , Fatores de Transcrição/genética
7.
Nat Cell Biol ; 21(3): 305-310, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742094

RESUMO

Balanced chromosomal rearrangements such as inversions and translocations can cause congenital disease or cancer by inappropriately rewiring promoter-enhancer contacts1,2. To study the potentially pathogenic consequences of balanced chromosomal rearrangements, we generated a series of genomic inversions by placing an active limb enhancer cluster from the Epha4 regulatory domain at different positions within a neighbouring gene-dense region and investigated their effects on gene regulation in vivo in mice. Expression studies and high-throughput chromosome conformation capture from embryonic limb buds showed that the enhancer cluster activated several genes downstream that are located within asymmetric regions of contact, the so-called architectural stripes3. The ectopic activation of genes led to a limb phenotype that could be rescued by deleting the CCCTC-binding factor (CTCF) anchor of the stripe. Architectural stripes appear to be driven by enhancer activity, because they do not form in mouse embryonic stem cells. Furthermore, we show that architectural stripes are a frequent feature of developmental three-dimensional genome architecture often associated with active enhancers. Therefore, balanced chromosomal rearrangements can induce ectopic gene expression and the formation of asymmetric chromatin contact patterns that are dependent on CTCF anchors and enhancer activity.


Assuntos
Inversão Cromossômica , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/metabolismo , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromossomos de Mamíferos/genética , Genômica/métodos , Botões de Extremidades/embriologia , Camundongos , Receptor EphA4/genética , Receptor EphA4/metabolismo
8.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595451

RESUMO

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Assuntos
Período de Replicação do DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina , DNA/genética , Período de Replicação do DNA/genética , Células-Tronco Embrionárias , Elementos Facilitadores Genéticos/genética , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Proteínas Repressoras/metabolismo , Análise Espaço-Temporal
9.
Am J Med Genet A ; 176(12): 2564-2574, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30302899

RESUMO

Schaaf-Yang Syndrome (SYS) is a genetic disorder caused by truncating pathogenic variants in the paternal allele of the maternally imprinted, paternally expressed gene MAGEL2, located in the Prader-Willi critical region 15q11-15q13. SYS is a neurodevelopmental disorder that has clinical overlap with Prader-Willi Syndrome in the initial stages of life but becomes increasingly distinct throughout childhood and adolescence. Here, we describe the phenotype of an international cohort of 78 patients with nonsense or frameshift mutations in MAGEL2. This cohort includes 43 individuals that have been reported previously, as well as 35 newly identified individuals with confirmed pathogenic genetic variants. We emphasize that intellectual disability/developmental delay, autism spectrum disorder, neonatal hypotonia, infantile feeding problems, and distal joint contractures are the most consistently shared features of patients with SYS. Our results also indicate that there is a marked prevalence of infantile respiratory distress, gastroesophageal reflux, chronic constipation, skeletal abnormalities, sleep apnea, and temperature instability. While there are many shared features, patients with SYS are characterized by a wide phenotypic spectrum, including a variable degree of intellectual disability, language development, and motor milestones. Our results indicate that the variation in phenotypic severity may depend on the specific location of the truncating mutation, suggestive of a genotype-phenotype association. This evidence may be useful in both prenatal and pediatric genetic counseling.


Assuntos
Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Adolescente , Criança , Pré-Escolar , Códon sem Sentido , Feminino , Mutação da Fase de Leitura , Estudos de Associação Genética , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Fenótipo , Síndrome , Adulto Jovem
10.
Nat Genet ; 50(10): 1463-1473, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30262816

RESUMO

The regulatory specificity of enhancers and their interaction with gene promoters is thought to be controlled by their sequence and the binding of transcription factors. By studying Pitx1, a regulator of hindlimb development, we show that dynamic changes in chromatin conformation can restrict the activity of enhancers. Inconsistent with its hindlimb-restricted expression, Pitx1 is controlled by an enhancer (Pen) that shows activity in forelimbs and hindlimbs. By Capture Hi-C and three-dimensional modeling of the locus, we demonstrate that forelimbs and hindlimbs have fundamentally different chromatin configurations, whereby Pen and Pitx1 interact in hindlimbs and are physically separated in forelimbs. Structural variants can convert the inactive into the active conformation, thereby inducing Pitx1 misexpression in forelimbs, causing partial arm-to-leg transformation in mice and humans. Thus, tissue-specific three-dimensional chromatin conformation can contribute to enhancer activity and specificity in vivo and its disturbance can result in gene misexpression and disease.


Assuntos
Cromatina/química , Elementos Facilitadores Genéticos/fisiologia , Membro Posterior/embriologia , Conformação Molecular , Morfogênese/genética , Fatores de Transcrição Box Pareados/fisiologia , Animais , Sistemas CRISPR-Cas , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , DNA/química , DNA/metabolismo , Embrião de Mamíferos , Membro Anterior/embriologia , Membro Anterior/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Membro Posterior/metabolismo , Camundongos , Camundongos Transgênicos , Conformação de Ácido Nucleico , Fatores de Transcrição Box Pareados/genética
11.
Nat Genet ; 50(5): 662-667, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662163

RESUMO

Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/química , Cromatina/genética , Polímeros/química , Animais , Fator de Ligação a CCCTC/genética , Linhagem Celular , Cromossomos/genética , Elementos Facilitadores Genéticos/genética , Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Receptor EphA4/genética
12.
Nature ; 538(7624): 265-269, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27706140

RESUMO

Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Variações do Número de Cópias de DNA/genética , Doença/genética , Duplicação Gênica/genética , Animais , DNA/genética , Fácies , Feminino , Fibroblastos , Dedos/anormalidades , Deformidades Congênitas do Pé/genética , Expressão Gênica , Genômica , Deformidades Congênitas da Mão/genética , Masculino , Camundongos , Fenótipo , Fatores de Transcrição SOX9/genética
13.
Cell ; 161(5): 1012-1025, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25959774

RESUMO

Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome.


Assuntos
Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Animais , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Humanos , Deformidades Congênitas dos Membros/genética , Camundongos , Regiões Promotoras Genéticas , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptor EphA4/genética
14.
Cell Rep ; 10(5): 833-839, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660031

RESUMO

Structural variations (SVs) contribute to the variability of our genome and are often associated with disease. Their study in model systems was hampered until now by labor-intensive genetic targeting procedures and multiple mouse crossing steps. Here we present the use of CRISPR/Cas for the fast (10 weeks) and efficient generation of SVs in mice. We specifically produced deletions, inversions, and also duplications at six different genomic loci ranging from 1.1 kb to 1.6 Mb with efficiencies up to 42%. After PCR-based selection, clones were successfully used to create mice via aggregation. To test the practicability of the method, we reproduced a human 500 kb disease-associated deletion and were able to recapitulate the human phenotype in mice. Furthermore, we evaluated the regulatory potential of a large genomic interval by deleting a 1.5 Mb fragment. The method presented permits rapid in vivo modeling of genomic rearrangements.

15.
Dev Biol ; 385(1): 83-93, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24161848

RESUMO

The morphology of bones is genetically determined, but the molecular mechanisms that control shape, size and the overall gestalt of bones remain unclear. We previously showed that metacarpals in the synpolydactyly homolog (spdh) mouse, which carries a mutation in Hoxd13 similar to the human condition synpolydactyly (SPD), were transformed to carpal-like bones with cuboid shape that lack cortical bone and a perichondrium and are surrounded by a joint surface. Here we provide evidence that spdh metacarpal growth plates have a defect in cell polarization with a random instead of linear orientation. In parallel prospective perichondral cells failed to adopt the characteristic flattened cell shape. We observed a similar cell polarity defect in metacarpals of Wnt5a(-/-) mice. Wnt5a and the closely related Wnt5b were downregulated in spdh handplates, and HOXD13 induced expression of both genes in vitro. Concomitant we observed mislocalization of core planar cell polarity (PCP) components DVL2 and PRICKLE1 in spdh metacarpals indicating a defect in the WNT/PCP pathway. Conversely the WNT/ß-CATENIN pathway, a hallmark of joint cells lining carpal bones, was upregulated in the perichondral region. Finally, providing spdh limb explant cultures with cells expressing either HOXD13 or WNT5A led to a non-cell autonomous partial rescue of cell polarity the perichondral region and restored the expression of perichondral markers. This study provides a so far unrecognized link between HOX proteins and cell polarity in the perichondrium and the growth plate, a failure of which leads to transformation of metacarpals to carpal-like structures.


Assuntos
Cartilagem/embriologia , Lâmina de Crescimento/embriologia , Proteínas de Homeodomínio/metabolismo , Ossos Metacarpais/embriologia , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cartilagem/metabolismo , Polaridade Celular , Células Cultivadas , Proteínas Desgrenhadas , Lâmina de Crescimento/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Proteínas com Domínio LIM/metabolismo , Ossos Metacarpais/metabolismo , Camundongos , Camundongos Knockout , Morfogênese/genética , Fosfoproteínas/metabolismo , Receptores da Fenciclidina/metabolismo , Sindactilia/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética , Proteína Wnt-5a , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...