Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 55(22): 11854-11866, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27805393

RESUMO

Investigation into the reactivity of reduced uranium species toward diazenes has revealed key intermediates in the four-electron cleavage of azobenzene. Trivalent Tp*2U(CH2Ph) (1a) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) and Tp*2U(2,2'-bpy) (1b) both perform the two-electron reduction of diazenes affording η2-hydrazido complexes Tp*2U(AzBz) (2-AzBz) (AzBz = azobenzene) and Tp*2U(BCC) (2-BCC) (BCC = benzo[c]cinnoline) in contrast to precursors of the bis(Cp*) (Cp* = 1,2,3,4,5-pentamethylcyclopentadienide) ligand framework. The four-electron cleavage of diazenes to give trans-bis(imido) species was possible by using Cp*U(MesPDIMe)(THF) (3) (MesPDIMe = 2,6-((Mes)N═CMe)2-C5H3N, Mes = 2,4,6-trimethylphenyl), which is supported by a highly reduced trianionic chelate that undergoes electron transfer. This proceeds via concerted addition at a single uranium center supported by both a crossover experiment and through addition of an asymmetrically substituted diazene, Ph-N═N-Tol. Further investigation of 3 and its substituted analogue, Cp*U(tBu-MesPDIMe)(THF) (3-tBu) (tBu-MesPDIMe = 2,6-((Mes)N═CMe)2-p-C(CH3)3-C5H2N), with benzo[c]cinnoline, revealed that the four-electron cleavage occurs first by a single electron reduction of the diazene with the redox chemistry performed solely at the redox-active pyridine(diimine) to form dimeric [Cp*U(BCC)(MesHPDIMe)]2 (5) and Cp*U(BCC)(tBu-MesPDIMe) (6). While a transient pyridine(diimine) triplet diradical in the formation of 5 results in H atom abstraction and p-pyridine coupling, the tert-butyl moiety in 6 allows for electronic rearrangement to occur, precluding deleterious pyridine-radical coupling. The monomeric analogue of 5, Cp*U(BCC)(MesPDIMe) (7), was synthesized via salt metathesis from Cp*UI(MesPDIMe) (3-I). All complexes have been characterized by 1H NMR and electronic absorption spectroscopies, X-ray diffraction, and, where pertinent, EPR spectroscopy. Further, the electronic structures of 3-I, 5, and 7 have been investigated by SQUID magnetometry.

2.
Angew Chem Int Ed Engl ; 53(45): 12055-8, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25219329

RESUMO

Five different first-row transition metal precursors (V(III), Cr(III), Mn(II), Co(II), Ni(II)) were successfully incorporated into a catechol porous organic polymer (POP) and characterized using ATR-IR and XAS analysis. The resulting metallated POPs were then evaluated for catalytic alkyne hydrogenation using high-throughput screening techniques. All POPs were unexpectedly found to be active and selective catalysts for alkyne semihydrogenation. Three of the metallated POPs (V, Cr, Mn) are the first of their kind to be active single-site hydrogenation catalysts. These results highlight the advantages of using a POP platform to develop new catalysts which are otherwise difficult to achieve through traditional heterogeneous and homogeneous routes.

3.
Inorg Chem ; 52(20): 12170-7, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24111545

RESUMO

A series of tris- and tetrakis(phosphinoamide) U/Co complexes has been synthesized. The uranium precursors, (η(2)-Ph2PN(i)Pr)4U (1), (η(2)-(i)Pr2PNMes)4U (2), (η(2)-Ph2PN(i)Pr)3UCl (3), and (η(2)-(i)Pr2PNMes)3UI (4), were easily accessed via addition of the appropriate stoichiometric equivalents of [Ph2PN(i)Pr]K or [(i)Pr2PNMes]K to UCl4 or UI4(dioxane)2. Although the phosphinoamide ligands in 1 and 4 have been shown to coordinate to U in an η(2)-fashion in the solid state, the phosphines are sufficiently labile in solution to coordinate cobalt upon addition of CoI2, generating the heterobimetallic Co/U complexes ICo(Ph2PN(i)Pr)3U[η(2)-Ph2PN(i)Pr] (5), ICo((i)Pr2PNMes)3U[η(2)-((i)Pr2PNMes)] (6), ICo(Ph2PN(i)Pr)3UI (7), and ICo((i)Pr2PNMes)3UI (8). Structural characterization of complexes 5 and 7 reveals reasonably short Co-U interatomic distances, with 7 exhibiting the shortest transition metal-uranium distance ever reported (2.874(3) Å). Complexes 7 and 8 were studied by cyclic voltammetry to examine the influence of the metal-metal interaction on the redox properties compared with both monometallic Co and heterobimetallic Co/Zr complexes. Theoretical studies are used to further elucidate the nature of the transition metal-actinide interaction.

4.
J Am Chem Soc ; 134(14): 6160-8, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22468980

RESUMO

The synthesis, characterization, and reactivity of the homoleptic uranium(IV) alkyls U(CH(2)C(6)H(5))(4) (1-Ph), U(CH(2)-p-CH(3)C(6)H(4))(4) (1-p-Me), and U(CH(2)-m-(CH(3))(2)C(6)H(3))(4) (1-m-Me(2)) are reported. The addition of 4 equiv of K(CH(2)Ar) (Ar = Ph, p-CH(3)C(6)H(4), m-(CH(3))(2)C(6)H(3)) to UCl(4) at -108 °C produces 1-Ph in good yields and 1-p-Me and 1-m-Me(2) in moderate yields. Further characterization of 1-Ph by X-ray crystallography confirmed η(4)-coordination of each benzyl ligand to the uranium center. Magnetic studies produced an effective magnetic moment of 2.60 µ(B) at 23 °C, which is consistent with a tetravalent uranium 5f(2) electronic configuration. Addition of 1 equiv of the redox-active α-diimine (Mes)DAB(Me) ((Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr]; Ar = 2,4,6-trimethylphenyl (Mes)) to 1-Ph results in reductive elimination of 1 equiv of bibenzyl (PhCH(2)CH(2)Ph), affording ((Mes)DAB(Me))U(CH(2)C(6)H(5))(2) (2-Ph). Treating an equimolar mixture of 1-Ph and 1-Ph-d(28) with (Mes)DAB(Me) forms the products from monomolecular reductive elimination, 2-Ph, 2-Ph-d(14), bibenzyl, and bibenzyl-d(14). This is confirmed by (1)H NMR spectroscopy and GC/MS analysis of both organometallic and organic products. Addition of 1 equiv of 1,2-bis(dimethylphosphino)ethane (dmpe) to 1-Ph results in formation of the previously synthesized (dmpe)U(CH(2)C(6)H(5))(4) (3-Ph), indicating the redox-innocent chelating phosphine stabilizes the uranium center in 3-Ph and prevents reductive elimination of bibenzyl. Full characterization for 3-Ph, including X-ray crystallography, is reported.

5.
Inorg Chem ; 51(4): 2058-64, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22289187

RESUMO

The electronic structures of two uranium compounds supported by redox-active α-diimine ligands, ((Mes)DAB(Me))(2)U(THF) (1) and Cp(2)U((Mes)DAB(Me)) (2) ((Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr]; Ar = 2,4,6-trimethylphenyl (Mes)), have been investigated using both density functional theory and multiconfigurational self-consistent field methods. Results from these studies have established that both uranium centers are tetravalent, that the ligands are reduced by two electrons, and that the ground states of these molecules are triplets. Energetically low-lying singlet states are accessible, and some transitions to these states are visible in the electronic absorption spectrum.

6.
Inorg Chem ; 50(20): 9838-48, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21761890

RESUMO

Uranium compounds supported by redox-active α-diimine ligands, which have methyl groups on the ligand backbone and bulky mesityl substituents on the nitrogen atoms {(Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr], where Ar = 2,4,6-trimethylphenyl (Mes)}, are reported. The addition of 2 equiv of (Mes)DAB(Me), 3 equiv of KC(8), and 1 equiv of UI(3)(THF)(4) produced the bis(ligand) species ((Mes)DAB(Me))(2)U(THF) (1). The metallocene derivative, Cp(2)U((Mes)DAB(Me)) (2), was generated by the addition of an equimolar ratio of (Mes)DAB(Me) and KC(8) to Cp(3)U. The bond lengths in the molecular structure of both species confirm that the α-diimine ligands have been doubly reduced to form ene-diamide ligands. Characterization by electronic absorption spectroscopy shows weak, sharp transitions in the near-IR region of the spectrum and, in combination with the crystallographic data, is consistent with the formulation that tetravalent uranium ions are present and supported by ene-diamide ligands. This interpretation was verified by U L(III)-edge X-ray absorption near-edge structure (XANES) spectroscopy and by variable-temperature magnetic measurements. The magnetic data are consistent with singlet ground states at low temperature and variable-temperature dependencies that would be expected for uranium(IV) species. However, both complexes exhibit low magnetic moments at room temperature, with values of 1.91 and 1.79 µ(B) for 1 and 2, respectively. Iodomethane was used to test the reactivity of 1 and 2 for multielectron transfer. While 2 showed no reactivity with CH(3)I, the addition of 2 equiv of iodomethane to 1 resulted in the formation of a uranium(IV) monoiodide species, ((Mes)DAB(Me))((Mes)DAB(Me2))UI {3; (Mes)DAB(Me2) = [ArN═C(Me)C(Me(2))NAr]}, which was characterized by single-crystal X-ray diffraction and U M(4)- and M(5)-edge XANES. Confirmation of the structure was also attained by deuterium labeling studies, which showed that a methyl group was added to the ene-diamide ligand carbon backbone.


Assuntos
Iminas/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Urânio/química , Cristalografia por Raios X , Transporte de Elétrons , Ligantes , Espectroscopia de Ressonância Magnética , Magnetometria , Modelos Moleculares , Conformação Molecular , Espectroscopia por Absorção de Raios X
7.
Inorg Chem ; 49(17): 7620-2, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-20672833

RESUMO

The uranium(IV) terminal oxo species Tp*(2)U(O) has been synthesized by oxygen-atom transfer from pyridine-N-oxide to Tp*(2)U(2,2'-bipyridine), a trivalent uranium species with a monoanionic bipyridine ligand. Full characterization of the oxo species using (1)H NMR and IR spectroscopies, X-ray crystallography, and computational studies was performed.

8.
Inorg Chem ; 49(3): 1103-10, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20050605

RESUMO

Hydrotris(3,5-dimethylpyrazolyl)borate uranium(III) diiodide derivatives have been prepared as an entry into low-valent uranium chemistry with these ligands. The bis(tetrahydrofuran) adduct, Tp*UI(2)(THF)(2) (1) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate), was synthesized by addition of sodium hydrotris(3,5-dimethylpyrazolyl)borate (NaTp*) to an equivalent of UI(3)(THF)(4). Addition of 2,2'-bipyridine (2,2'-bpy) to 1 displaced the THF molecules producing Tp*UI(2)(2,2'-bpy) (2). Both derivatives were characterized by (1)H NMR and IR spectroscopies, magnetic measurements, and X-ray crystallography. Reduction of both species was attempted with two equivalents of potassium graphite. The reduction of 1 did not result in a clean product, but rather decomposition and ligand redistribution. However, compound 2 was reduced to form Tp*(2)U(2,2'-bpy), 3, which is composed of a uranium(III) ion with a radical monoanionic bipyridine ligand. This was confirmed by X-ray crystallography, which revealed distortions in the bond lengths of the bipyridine consistent with reduction. Further support was obtained by (1)H NMR spectroscopy, which showed resonances shifted far upfield, consistent with radical character on the 2,2'-bipyridine ligand. Future studies will explore the reactivity of this compound as well as the consequences for redox-activity in the bipyridine ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA