Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Respir J ; 56(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32366491

RESUMO

BACKGROUND: Current risk stratification tools in pulmonary arterial hypertension (PAH) are limited in their discriminatory abilities, partly due to the assumption that prognostic clinical variables have an independent and linear relationship to clinical outcomes. We sought to demonstrate the utility of Bayesian network-based machine learning in enhancing the predictive ability of an existing state-of-the-art risk stratification tool, REVEAL 2.0. METHODS: We derived a tree-augmented naïve Bayes model (titled PHORA) to predict 1-year survival in PAH patients included in the REVEAL registry, using the same variables and cut-points found in REVEAL 2.0. PHORA models were validated internally (within the REVEAL registry) and externally (in the COMPERA and PHSANZ registries). Patients were classified as low-, intermediate- and high-risk (<5%, 5-20% and >10% 12-month mortality, respectively) based on the 2015 European Society of Cardiology/European Respiratory Society guidelines. RESULTS: PHORA had an area under the curve (AUC) of 0.80 for predicting 1-year survival, which was an improvement over REVEAL 2.0 (AUC 0.76). When validated in the COMPERA and PHSANZ registries, PHORA demonstrated an AUC of 0.74 and 0.80, respectively. 1-year survival rates predicted by PHORA were greater for patients with lower risk scores and poorer for those with higher risk scores (p<0.001), with excellent separation between low-, intermediate- and high-risk groups in all three registries. CONCLUSION: Our Bayesian network-derived risk prediction model, PHORA, demonstrated an improvement in discrimination over existing models. This is reflective of the ability of Bayesian network-based models to account for the interrelationships between clinical variables on outcome, and tolerance to missing data elements when calculating predictions.


Assuntos
Hipertensão Arterial Pulmonar , Teorema de Bayes , Hipertensão Pulmonar Primária Familiar , Humanos , Sistema de Registros , Medição de Risco
2.
Curr Hypertens Rep ; 21(6): 45, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31025123

RESUMO

PURPOSE OF REVIEW: Pulmonary arterial hypertension (PAH) is a chronic, progressive, and incurable disease with significant morbidity and mortality. Despite increasingly available treatment options, PAH patients continue to experience disease progression and increased rates of hospitalizations due to right heart failure. Physician's ability to comprehensively assess PAH patients, determine prognosis, and monitor disease progression and response to treatment remains critical in optimizing outcomes. RECENT FINDINGS: Risk assessment in PAH should include a range of clinical, hemodynamic, and exercise parameters, performed in a serial fashion over the course of treatment. Approaches to risk assessment in PAH patients include the use of risk variables, scores, and equations that stratify the impact of both modifiable (e.g., 6-min walk distance, functional class, brain natriuretic peptide), and non-modifiable (e.g., age, gender, PAH etiology) risk factors. Such tools allow physicians to better determine prognosis, allocate treatment resources, and enhance the consistency of treatment approaches across providers. Comprehensive and accurate risk prediction is essential to make individualized treatment decisions and optimizing outcomes in PAH.


Assuntos
Hipertensão Arterial Pulmonar/diagnóstico , Medição de Risco/métodos , Índice de Gravidade de Doença , Algoritmos , Árvores de Decisões , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Hipertensão Arterial Pulmonar/epidemiologia , Hipertensão Arterial Pulmonar/mortalidade
3.
Int J Approx Reason ; 103: 195-211, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31130777

RESUMO

Cox's proportional hazards (CPH) model is quite likely the most popular modeling technique in survival analysis. While the CPH model is able to represent a relationship between a collection of risks and their common effect, Bayesian networks have become an attractive alternative with an increased modeling power and far broader applications. Our paper focuses on a Bayesian network interpretation of the CPH model (BN-Cox). We provide a method of encoding knowledge from existing CPH models in the process of knowledge engineering for Bayesian networks. This is important because in practice we often have CPH models available in the literature and no access to the original data from which they have been derived. We compare the accuracy of the resulting BN-Cox model to the original CPH model, Kaplan-Meier estimate, and Bayesian networks learned from data, including Naive Bayes, Tree Augmented Naive Bayes, Noisy-Max, and parameter learning by means of the EM algorithm. BN-Cox model came out as the most accurate of all BN approaches and very close to the original CPH model. We study two approaches for simplifying the BN-Cox model for the sake of representational and computational efficiency: (1) parent divorcing and (2) removing less important risk factors. We show that removing less important risk factors leads to smaller loss of accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...