Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 7(1): e10251, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079628

RESUMO

Localized delivery of diagnostic/therapeutic agents to cerebral aneurysms, lesions in brain arteries, may offer a new treatment paradigm. Since aneurysm rupture leading to subarachnoid hemorrhage is a devastating medical emergency with high mortality, the ability to noninvasively diagnose high-risk aneurysms is of paramount importance. Moreover, treatment of unruptured aneurysms with invasive surgery or minimally invasive neurointerventional surgery poses relatively high risk and there is presently no medical treatment of aneurysms. Here, leveraging the endogenous biophysical properties of brain aneurysms, we develop particulate carriers designed to localize in aneurysm low-shear flows as well as to adhere to a diseased vessel wall, a known characteristic of high-risk aneurysms. We first show, in an in vitro model, flow guided targeting to aneurysms using micron-sized (2 µm) particles, that exhibited enhanced targeting (>7 folds) to the aneurysm cavity while smaller nanoparticles (200 nm) showed no preferable accumulation. We then functionalize the microparticles with glycoprotein VI (GPVI), the main platelet receptor for collagen under low-medium shear, and study their targeting in an in vitro reconstructed patient-specific aneurysm that contained a disrupted endothelium at the cavity. Results in this model showed that GPVI microparticles localize at the injured aneurysm an order of magnitude (>9 folds) more than control particles. Finally, effective targeting to aneurysm sites was also demonstrated in an in vivo rabbit aneurysm model with a disrupted endothelium. Altogether, the presented biophysical strategy for targeted delivery may offer new treatment opportunities for cerebral aneurysms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...