Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(23): 8367-8377, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37256922

RESUMO

The main aim of this work was to use the iron-iron oxide nanochains (Fe NCs) as adsorbents of the carcinogenic cationic crystal violet (CV) and anionic Congo red (CR) dyes from water. The investigated adsorbent was prepared by a magnetic-field-induced reduction reaction, and it revealed a typical core-shell structure. It was composed of an iron core covered by a thin Fe3O4 shell (<4 nm). The adsorption measurements conducted with UV-vis spectroscopy revealed that 15 mg of Fe NCs constituted an efficient dose to be used in the CV and CR treatment. The highest effectiveness of CV and CR removal was found for a contact time of 90 min at pH 7 and 150 min at pH 8, respectively. Kinetic studies indicated that the adsorption followed the pseudo-first-order kinetic model. The adsorption process followed the Temkin model for both dyes taking into account the highest value of the R2 coefficient, whereas in the case of CR, the Redlich-Peterson model could be also considered. The maximal adsorption capacity estimated from the Langmuir isotherms for the CV and CR was 778.47 and 348.46 mg g-1, respectively. Based on the Freundlich model, both dyes adsorbed on the Fe NCs through chemisorption, but Coulombic interactions between the dye and adsorbent cannot be excluded in the case of the CV dye. The obtained results proved that the investigated Fe NCs had an excellent adsorption ability for both dye molecules within five cycles of adsorption/desorption, and therefore, they can be considered as a promising material for water purification and environmental applications.

2.
Nanotechnology ; 34(32)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37160113

RESUMO

The zerovalent iron (Fe0) nanomaterials tend to be spontaneously oxidized in the presence of oxygen. This leads to the formation of interface composed of iron core and thin iron oxide shell. These structures are frequently observed with transmission electron microscope but, at the same time, it is hard to determine the precise structural and chemical composition of oxide shell. This feature is very important for possible applications of Fe0nanostructures. Hence, the present work aims to deliver more detailed insights in this topic. The investigations are performed for the iron nanochains prepared in the magnetic-field-induce reduction of FeCl3by NaBH4. The high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoemission spectroscopy confirm that the iron nanochains are covered by very thin oxide layer not exceeding over 3 nm. Moreover, the detailed XPS analyses of O 1s and Fe 2p lines indicate that the iron oxide shell reveals Fe3O4nature. Moreover, this work demonstrated that some by-products of the reaction containing boron are presented in the sample even after a removal of the thin iron oxide shell by Ar+treatment.

3.
Macromol Rapid Commun ; 44(9): e2300038, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36880406

RESUMO

In order to use the infrared (IR) radiation shielding materials, they should take a form of thin film coatings deposited on glass/polymer substrates or be used as fillers of glass/polymer. The first approach usually suffers from several technological problems. Therefore, the second strategy gains more and more attention. Taking into account this trend, this work presents the usage of iron nanoparticles (Fe NPs) embedded into the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) films as the shielding material in near-infrared (NIR) and mid-infrared (MIR) region. The performed investigations show that the transmittance of copolymer films decreases with increasing content of the Fe NPs inside them. It is found that the average fade of IR transmittance for 1, 2.5, 5, 10, and 50 mg of Fe NPs is about 13%, 24%, 31%, 77%, and 98%, respectively. Moreover, it is observed that the PVDF-HFP films filled in the Fe NPs almost does not reflect the NIR and MIR radiation. Hence, the IR shielding properties of the PVDF-HFP films can be effectively tuned by the addition of proper amount of the Fe NPs. This, in turn, shows that the PVDF-HFP films filled in the Fe NPs constitute a great option for IR antireflective and shielding applications.


Assuntos
Ferro , Nanopartículas , Polivinil/química , Polímeros , Nanopartículas/química
4.
Phys Chem Chem Phys ; 24(1): 326-335, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34897299

RESUMO

Preparation and detailed structural characterization of iron-nickel wire-like nanochains with Fe0.75Ni0.25, Fe0.50Ni0.50, and Fe0.25Ni0.75 compositions are reported. The investigated nanomaterials were produced by the novel template-free magnetic-field-induced reduction reaction with NaBH4 as the reducing agent. It is demonstrated that this method leads to the formation of Fe-Ni nanochains composed of spherical nanoparticles with an average diameter of 50-70 nm and with a very high degree of atomic disorder manifested as the lack of clearly developed bcc and fcc phases, which are usually observed for nano- and polycrystalline Fe-Ni species. The recorded wide-angle X-ray scattering data for the obtained Fe-Ni nanochains exhibit a strong resemblance to those obtained for bulk metallic glasses. The atomic scale structure of the investigated nanochains has been studied using pair distribution function analysis of the recorded total scattering data. The best fits to the experimental pair distribution functions have been achieved assuming two-phase models of hcp and bcc networks with the size of coherently scattering regions of about 2.5 nm in diameter, for each Fe-Ni composition. The transmission electron microscopy images indicate that the glass-like bimetallic alloy cores are covered by amorphous oxide/hydroxide shells with their thickness ranging from 2 to 5 nm. Moreover, electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy results confirm the core-shell structure of the Fe-Ni nanochains and the complex character of the shell layer which consists of several iron- and nickel-containing phases.

5.
Materials (Basel) ; 14(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443270

RESUMO

Thermal treatment is a post-synthesis treatment that aims to improve the crystallinity and interrelated physical properties of as-prepared materials. This process may also cause some unwanted changes in materials like their oxidation or contamination. In this work, we present the post-synthesis annealing treatments of the amorphous Fe1-xCox (x = 0.25; 0.50; 0.75) Wire-like nanochains performed at 400 °C in two different atmospheres, i.e., a mixture of 80% nitrogen and 20% hydrogen and argon. These processes caused significantly different changes of structural and magnetic properties of the initially-formed Fe-Co nanostructures. All of them crystallized and their cores were composed of body-centered cubic Fe-Co phase, whereas their oxide shells comprised of a mixture of CoFe2O4 and Fe3O4 phases. However, the annealing carried out in hydrogen-containing atmosphere caused a decomposition of the initial oxide shell layer, whereas a similar process in argon led to its slight thickening. Moreover, it was found that the cores of thermally-treated Fe0.25Co0.75 nanochains contained the hexagonal closest packed (hcp) Co phase and were covered by the nanosheet-like shell layer in the case of annealing performed in argon. Considering the evolution of magnetic properties induced by structural changes, it was observed that the coercivities of annealed Fe-Co nanochains increased in comparison with their non-annealed counterparts. The saturation magnetization (MS) of the Fe0.25Co0.75 nanomaterial annealed in both atmospheres was higher than that for the non-annealed sample. In turn, the MS of the Fe0.75Co0.25 and Fe0.50Co0.50 nanochains annealed in argon were lower than those recorded for non-annealed samples due to their partial oxidation during thermal processing.

6.
Beilstein J Nanotechnol ; 12: 424-431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104620

RESUMO

A novel solution combustion synthesis of nanoscale spinel-structured Co3O4 powder was proposed in this work. The obtained material was composed of loosely arranged nanoparticles whose average diameter was about 36 nm. The as-prepared cobalt oxide powder was also tested as the anode material for Li-ion batteries and revealed specific capacities of 1060 and 533 mAh·g-1 after 100 cycles at charge-discharge current densities of 100 and 500 mA·g-1, respectively. Moreover, electrochemical measurements indicate that even though the synthesized nanomaterial possesses a low active surface area, it exhibits a relatively high specific capacity measured at 100 mA·g-1 after 100 cycles and a quite good rate capability at current densities between 50 and 5000 mA·g-1.

7.
Materials (Basel) ; 14(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062888

RESUMO

An improved method for the production of luminescent carbon nanoparticles is proposed in this work. The new method overcomes the disadvantages of commonly used approaches. It involves two-stage laser ablation in water and in aqueous solutions, where the first stage is the laser ablation of a graphite target and the second is the shredding of particles produced in the first step. The two-stage method offers the optimization of the laser pulse fluence for the performance of each process. It was found that the two-stage process of laser ablation allows producing photoluminescent carbon structures in pure water. The additional reagent may be added either in the first or second stage. The first stage performed in pure water allows avoiding the contamination of the target. Moreover, it simplifies the identification of the origin of photoluminescence. Two synthesis routes for the preparation of carbon nanoparticles by the proposed method using pure water as well as urea aqueous solution are investigated. It was found that the use of urea as a reagent results in luminescence properties similar to those obtained with other more hazardous amine-based reagents. The influence of the synthesis approach and process parameters on the structural and luminescent properties of nanoparticles is also explored in this work.

8.
Nanotechnology ; 31(28): 285703, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32244241

RESUMO

In this work we apply N+ ion irradiation on vertically aligned carbon nanotube (VACNT) arrays in order to increase the number of connections and joints in the CNT network. The ions energy was 50 keV and fluence 5 × 1017 ions cm-2. The film was 160 µm thick. SEM images revealed the ion irradiation altered the carbon bonding and created a sponge-like, brittle structure at the surface of the film, with the ion irradiation damage region extending ∼4 µm in depth. TEM images showed the brittle structure consists of amorphous carbon forming between nanotubes. The significant enhancement of mechanical properties of the irradiated sample studied by the cyclic nanoindentation with a flat punch indenter was observed. Irradiation on the VACNT film made the structure stiffer, resulted in a higher percentage recovery, and reduced the energy dissipation under compression. The results are encouraging for further studies which will lead to create a class of materials-ion-irradiated VACNT films-which after further research may find application in storage or harvesting energy at the micro/nanoscale.

9.
Nanoscale Res Lett ; 14(1): 373, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823131

RESUMO

Iron is the crucial element for living organisms and its deficiency is described as the most common nutritional disorder all over the world. Nowadays, more effective and safe iron supplementation strategies for both humans and animals become one of the most important challenges in the therapy of nutritional deficiencies. Our previous in vivo studies confirmed safety and biodegradability of in-house manufactured zinc oxide-based nanoparticles and their rapid distribution to majority of organs and tissues in the body. In vitro examinations performed on Caco-2 cell line, a model of epithelial cells of the gastrointestinal tract, revealed a low toxicity of studied nanomaterials. In the current study, we investigated biodegradable zinc oxide nanoparticles doped with Fe(III) as a perspective supplementation strategy for iron deficiency. Biodegradable ZnO:Fe nanoparticles were intra-gastrically administered to adult mice and following 24 h, animals were sacrificed with collection of internal organs for further analyses. The iron concentration measured with atomic absorption spectrometry and histological staining (Perl's method) showed a rapid distribution of iron-doped nanoparticles to tissues specifically related with iron homeostasis. Accumulation of iron was also visible within hepatocytes and around blood vessels within the spleen, which might indicate the transfer of Fe-doped nanoparticles from the bloodstream into the tissue. Reassuming, preliminary results obtained in the current study suggest that biodegradable ZnO nanoparticles doped with Fe might be a good carriers of exogenous iron in the living body. Therefore, subsequent investigations focus on determination an exact mechanisms related with an iron deposition in the tissue and influence of nanoparticle carriers on iron metabolism are required.

10.
Nanoscale ; 9(43): 16511-16545, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29067381

RESUMO

A lot of physical and chemical preparation methods of one-dimensional (1D) structures are known today. Most of them use highly advanced technology or quite complex chemical reagents. This results in their high costs and difficulties with their implementation to a large industrial scale. Hence, new, facile and inexpensive approaches are still sought. One alternative to wire-like structure production is based on the chemical reduction reactions combined with an external magnetic field, which acts as an independent synthesis parameter. This approach is commonly called magnetic-field-assisted (MFA) synthesis or magnetic-field-induced (MFI) synthesis. As usual, this manufacturing strategy comprises both drawbacks and advantages, which are introduced in this review. Moreover, this work shows that MFI synthesis depends on several synthesis parameters including the strength of the applied magnetic field, reaction temperature, pH value of the reaction environment, chemical composition of the precursor solution, reaction time, and also the presence of surfactants, complexing agents, nucleating agents, initiators as well as organic solvents. All of them have an impact on the morphology and dimensions of wire-like materials and their chemical, physical and mechanical properties. Finally, the opportunities and challenges associated with the magnetic-assisted fabrication of wire-like structures are widely discussed in this review.

11.
Magn Reson Med ; 77(2): 904-910, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26900678

RESUMO

PURPOSE: Several in vivo applications of dissolution dynamic nuclear polarization (DNP) require rapid successive injections of hyperpolarized substrates. Here we present the design and performance of a custom-built multisample dissolution DNP setup for small animal research. METHODS: The DNP setup consists of a commercial wide-bore magnet charged to 3.35 T, a cryostat, a 94-GHz microwave source, and a custom-built skeleton that accommodates four identical sample sticks. Each sample stick features a dissolver locked into the skeleton port and a lifter, which permits moving the sample cup out of the liquid helium bath for dissolution. RESULTS: The dissolution of the first sample was triggered after 2 hours of polarization buildup during single-shot operation of the cryostat. Thereafter, a time window of 75-90 min was available to dissolve the remaining three polarized samples. The average liquid state polarization over all four sticks was measured as 18.7% ± 2.3% for [1-13C] pyruvate 30 s after dissolution. In vivo applicability of the setup using serial injections of [1-13C] pyruvate to study cardiac metabolism in rats revealed good reproducibility. CONCLUSION: The proposed four-sample DNP insert provides reproducible liquid state polarization of [1-13C] pyruvate and allows for rapid repeat injections in small animals. Magn Reson Med 77:904-910, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Animais , Bicarbonatos/metabolismo , Desenho de Equipamento , Feminino , Coração/diagnóstico por imagem , Injeções/instrumentação , Ácido Láctico/administração & dosagem , Ácido Láctico/metabolismo , Ácido Pirúvico/administração & dosagem , Ácido Pirúvico/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Radiology ; 278(3): 742-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26599666

RESUMO

PURPOSE: To implement hyperpolarized magnetic resonance (MR) imaging in an animal model of ischemia-reperfusion and to assess in vivo the regional changes in pyruvate metabolism within the 1st hour and at 1 week after a brief episode of coronary occlusion and reperfusion. MATERIALS AND METHODS: All animal experiments were performed with adherence to the Swiss Animal Protection law and were approved by the regional veterinary office. A closed-chest rat model was implemented by using an inflatable balloon secured around the left coronary artery. Animals were placed in an MR system 5-7 days after surgery. [1-(13)C]pyruvate was polarized by using a home-built multisample hyperpolarizer. Hyperpolarized pyruvate was injected at five stages: at baseline; at reperfusion after 15 minutes of coronary occlusion; and at 30 minutes, 60 minutes, and 1 week after ischemia reperfusion. The conversion of pyruvate into lactate and bicarbonate was imaged by using dedicated MR sequences alongside wall motion and delayed enhancement imaging. After imaging, the heart was removed and stained to delineate the area at risk (AAR). Differences between AAR and remote myocardium were assessed by using a repeated measures analysis of variance and a post hoc Bonferroni multiple comparison test. RESULTS: Data were collected in 12 animals. Occlusion led to hypokinesia of the anterior or anterolateral segments of the myocardium. At reperfusion, the average lactate-to-bicarbonate ratio increased in the AAR relative to that at baseline (from 1.93 ± 0.48 to 3.01 ± 0.74, P < .001) and was significantly higher when compared with that in the remote area (1.91 ± 0.38, P < .001). In the 60 minutes after occlusion, the lactate-to-bicarbonate ratio in the AAR recovered but was still elevated relative to that in the remote area. One week after ischemia-reperfusion, no difference between AAR and remote area could be detected. CONCLUSION: Hyperpolarized metabolic MR imaging can be used to successfully detect acute changes in [1-(13)C]pyruvate metabolism after ischemia-reperfusion, thereby enabling in vivo monitoring of the metabolic effects of reperfusion strategies.


Assuntos
Imagem Cinética por Ressonância Magnética/métodos , Traumatismo por Reperfusão Miocárdica/diagnóstico , Miocárdio/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Razão Sinal-Ruído
13.
Beilstein J Nanotechnol ; 6: 1652-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425415

RESUMO

The main goal of this work is to study the structural and magnetic properties of iron nanowires and iron nanoparticles, which have been fabricated in almost the same processes. The only difference in the synthesis is an application of an external magnetic field in order to form the iron nanowires. Both nanomaterials have been examined by means of transmission electron microscopy, energy dispersive X-ray spectrometry, X-ray diffractometry and Mössbauer spectrometry to determine their structures. Structural investigations confirm that obtained iron nanowires as well as nanoparticles reveal core-shell structures and they are composed of crystalline iron cores that are covered by amorphous or highly defected phases of iron and iron oxides. Magnetic properties have been measured using a vibrating sample magnetometer. The obtained values of coercivity, remanent magnetization, saturation magnetization as well as Curie temperature differ for both studied nanostructures. Higher values of magnetizations are observed for iron nanowires. At the same time, coercivity and Curie temperature are higher for iron nanoparticles.

14.
Magn Reson Med ; 73(5): 1713-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24845417

RESUMO

PURPOSE: Fast dynamic imaging of hyperpolarized (13) C-labeled pyruvate and its downstream metabolites shows great potential for probing metabolic changes in the heart. Sequences that allow for fast encoding of the spectral and spatial information of the myocardial metabolism and optimal signal excitation are usually limited by gradient performance, especially at high magnetic fields. Here we propose a combination of a spectral-spatial multiband excitation and multiecho readout to overcome these limitations. METHODS: By using a low-bandwidth, two-pulse excitation, a thinner slice compared with conventional spectral-spatial excitation is achieved, while at the same time allowing for low flip angle excitation on pyruvate and high flip angle excitation on bicarbonate and lactate, which optimizes signal-to-noise ratio (SNR) in cardiac metabolic imaging. The implementation was evaluated in 13 healthy female Sprague-Dawley rats at 9.4T. RESULTS: Using a slice thickness of 4 mm, a mean (± standard deviation) peak SNR of 18.3 (±8.4), 15.2 (±6.6), and 8.6 (±2.0) was observed for pyruvate, lactate, and bicarbonate, respectively. CONCLUSION: This approach provides high SNR in metabolic images while at the same time allowing for a thin slice selection even at high magnetic fields. This is crucial in metabolic imaging in small animal models.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Imagem Ecoplanar/métodos , Metabolismo Energético/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Miocárdio/metabolismo , Algoritmos , Animais , Feminino , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
15.
NMR Biomed ; 26(11): 1380-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23616307

RESUMO

Hyperpolarized (13)C-labeled pyruvate is a promising tool to investigate cardiac metabolism. It has been shown that changes in substrate metabolism occur following the induction of ischemia. To investigate the metabolic changes that are confined to spatial regions, high spatiotemporal resolution is required. The present work exploits both spatial and temporal correlations using k-t principal component analysis (PCA) to undersample the spatiotemporal domain, thereby speeding up data acquisition. A numerical model was implemented to investigate optimal acquisition and reconstruction parameters for pyruvate, lactate and bicarbonate maps of the heart. Subsequently, prospectively undersampled in vivo data on rat hearts were acquired using a combination of spectral-spatial signal excitation and a variable-density single-shot echo planar readout. Using five-fold k-t PCA, a spatial resolution of 1 × 1 mm(2) at a temporal resolution of 3 s was achieved.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Miocárdio/metabolismo , Análise Espaço-Temporal , Animais , Simulação por Computador , Feminino , Análise de Componente Principal , Ratos , Ratos Wistar , Processamento de Sinais Assistido por Computador , Fatores de Tempo
16.
J Magn Reson ; 214(1): 166-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22142831

RESUMO

We describe the design and initial performance results of a multi-sample dissolution dynamic-nuclear-polarization (DNP) polarizer based on a Helium-temperature NMR cryostat for use in a wide-bore NMR magnet with a room-temperature bore. The system is designed to accommodate up to six samples in a revolver-style sample changer that allows changing samples at liquid-Helium temperature and at pressures ranging from ambient pressure down to 1 mbar. The multi-sample setup is motivated by the desire to do repetitive in vivo measurements and to characterize the DNP process by investigating samples of different chemical composition. The system can be loaded with up to six samples simultaneously to reduce sample loading and unloading. Therefore, series of experiments can be carried out faster and more reliably. The DNP probe contains an oversized microwave cavity and includes EPR and NMR capabilities for monitoring the DNP process. In the solid state, DNP enhancements corresponding to ∼45% polarization for [1-(13)C]pyruvic acid with a trityl radical have been measured. In the initial liquid-state acquisition experiments described here, the polarization was found to be ∼13%, corresponding to an enhancement factor exceeding 16,000 relative to thermal polarization at 9.4 T and ambient temperature.


Assuntos
Hélio/química , Espectroscopia de Ressonância Magnética/instrumentação , Micro-Ondas , Manejo de Espécimes/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Amostra
17.
Nature ; 474(7350): 173-8, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21614000

RESUMO

Alternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants. Hub1 binding mildly alters spliceosomal protein interactions and barely affects general splicing in S. cerevisiae. However, spliceosomes that lack Hub1, or are defective in Hub1-HIND interaction, cannot use certain non-canonical 5' splice sites and are defective in alternative SRC1 splicing. Hub1 confers alternative splicing not only when bound to HIND, but also when experimentally fused to Snu66, Prp38, or even the core splicing factor Prp8. Our study indicates a novel mechanism for splice site utilization that is guided by non-covalent modification of the spliceosome by an unconventional ubiquitin-like modifier.


Assuntos
Processamento Alternativo , Regulação Fúngica da Expressão Gênica , Ligases/metabolismo , Sítios de Splice de RNA/genética , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Deleção de Genes , Humanos , Ligases/deficiência , Ligases/genética , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Ligação Proteica , Conformação Proteica , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/deficiência , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/deficiência , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/deficiência , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Spliceossomos/química , Spliceossomos/metabolismo , Complexos Ubiquitina-Proteína Ligase/deficiência , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinas
18.
ChemMedChem ; 3(7): 1118-28, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18428185

RESUMO

p53 has been at the centre of attention for drug design since the discovery of its growth-suppressive and pro-apoptotic activity. Herein we report the design and characterisation of a new class of isoquinolinone inhibitors of the MDM2-p53 interaction. Our identification of druglike and selective inhibitors of this protein-protein interaction included a straightforward in silico compound-selection process, a recently reported NMR spectroscopic approach for studying the MDM2-p53 interaction, and selectivity screening assays using cells with the same genetic background. The selected inhibitors were all able to induce apoptosis and the expression of p53-related genes, but only the isoquinolin-1-one-based inhibitors stabilised p53. Our NMR experiments give a persuading explanation for these results, showing that isoquinolin-1-one derivates are able to dissociate the preformed MDM2-p53 complex in vitro, releasing a folded and soluble p53. The joint application of these methods provides a framework for the discovery of protein interaction inhibitors as a promising starting point for further drug design.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Isoquinolinas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2 , Antineoplásicos/química , Linhagem Celular Tumoral , Simulação por Computador , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Ligação Proteica , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
19.
Cell Cycle ; 6(19): 2386-92, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17938582

RESUMO

The oncoprotein Mdm2, and the recently intensely studied, homologues protein Mdmx, are principal negative regulators of the p53 tumor suppressor. The mechanisms by which they regulate the stability and activity of p53 are not fully established. We have determined the crystal structure of the N-terminal domain of Mdmx bound to a 15-residue p53 peptide. The structure reveals that although the principle features of the Mdm2-p53 interaction are preserved in the Mdmx-p53 complex, the Mdmx hydrophobic cleft on which the p53 peptide binds is significantly altered: a part of the cleft is blocked by sidechains of Met and Tyr of the p53-binding pocket of Mdmx. Thus specific inhibitors of Mdm2-p53 would not be optimal for binding to Mdmx. Our binding assays show indeed that nutlins, the newly discovered, potent antagonists of the Mdm2-p53 interaction, are not capable to efficiently disrupt the Mdmx-p53 interaction. To achieve full activation of p53 in tumor cells, compounds that are specific for Mdmx are necessary to complement the Mdm2 specific binders.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/farmacologia , Modelos Moleculares , Estrutura Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Oncogênicas/química , Piperazinas/farmacologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/química , Peixe-Zebra
20.
J Med Chem ; 50(18): 4382-7, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17696513

RESUMO

We present an NMR-based antagonist induced dissociation assay (AIDA) for validation of inhibitor action on protein-protein interactions. As opposed to many standard NMR methods, AIDA directly validates the inhibitor potency in an in vitro NMR competition binding experiment. AIDA requires a large protein fragment (larger than 30 kDa) to bind to a small reporter protein (less than 20 kDa). We show here that a small fragment of a protein fused to glutathione S-transferase (GST) can effectively substitute the large protein component. We successfully used a GST-tagged N-terminal 73-residue p53 domain for binding studies with the human MDM2 protein. Other interactions we studied involved complexes of CDK2, cyclin A, p27, and the retinoblastoma protein. All these proteins play a key role in the cell division cycle, are associated with tumorigenesis, and are thus the subject of anticancer therapy strategies.


Assuntos
Ciclina A/química , Quinase 2 Dependente de Ciclina/química , Inibidor de Quinase Dependente de Ciclina p27/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína do Retinoblastoma/química , Proteína Supressora de Tumor p53/química , Ligação Competitiva , Glutationa Transferase/química , Glutationa Transferase/genética , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...