Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38137875

RESUMO

The potential of circulating tumor DNA (ctDNA) as a biomarker to assess the progression of various solid tumors has been explored extensively. In this study, we investigated the feasibility of utilizing a ctDNA sequencing panel specifically designed to target the most frequently mutated genomic regions in colon and pancreas cancers. Through somatic analysis of colon and pancreas tumors, we targeted 27 regions within eight genes. By employing PCR amplification and Illumina NGS, we ensured that each region was adequately covered with a minimum of 5000 reads (with an average of 12,000 reads). Our method exhibited reproducibility with repetition and dilutions. The positive detection threshold for ctDNA was set at a cutoff value of 0.5% ctDNA of the total reads using IGV. Among the samples analyzed, 71% of colon cancer cases displayed somatic mutations covered by the targeted regions. Within this group, detectable ctDNA was observed in 34% of the cases. Conversely, in pancreatic cancer, 55% of mutations were covered by the panel's regions, but only 13% of these cases exhibited detectable ctDNA. In follow-ups with the patients, changes in ctDNA percentages demonstrated complete concordance with changes in the clinical condition in 88% of the cases. Our findings suggest that employing a basic ctDNA-targeted panel can serve as a cost-effective and reliable approach for repeated monitoring of the efficacy of colon cancer therapy. However, in the case of pancreatic cancer, ctDNA showed limited utility, and alternative biomarkers may offer superior diagnostic value. Additionally, we found that a negative ctDNA test is not a guarantee for a relapse-free recovery; thus, we recommend a continuous follow-up with the patient on a long-term basis.

2.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36460334

RESUMO

BACKGROUND: Patients with cancers that exhibit extraordinarily high somatic mutation numbers are ideal candidates for immunotherapy and enable identifying tumor-specific peptides through stimulation of tumor-reactive T cells (Tc). METHODS: Colorectal cancers (CRC) HROC113 and HROC285 were selected based on high TMB, microsatellite instability and HLA class I expression. Their HLA ligandome was characterized using mass spectrometry, compared with the HLA ligand atlas and HLA class I-binding affinity was predicted. Cryptic peptides were identified using Peptide-PRISM. Patients' Tc were isolated from either peripheral blood (pTc) or tumor material (tumor-infiltrating Tc, TiTc) and expanded. In addition, B-lymphoblastoid cells (B-LCL) were generated and used as antigen-presenting cells. pTc and TiTc were stimulated twice for 7 days using peptide pool-loaded B-LCL. Subsequently, interferon gamma (IFNγ) release was quantified by ELISpot. Finally, cytotoxicity against autologous tumor cells was assessed in a degranulation assay. RESULTS: 100 tumor-specific candidate peptides-97 cryptic peptides and 3 classically mutated neoantigens-were selected. The neoantigens originated from single nucleotide substitutions in the genes IQGAP1, CTNNB1, and TRIT1. Cryptic and neoantigenic peptides inducing IFNγ secretion of Tc were further investigated. Stimulation of pTc and TiTc with neoantigens and selected cryptic peptides resulted in increased release of cytotoxic granules in the presence of autologous tumor cells, substantiating their improved tumor cell recognition. Tetramer staining showed an enhanced number of pTc and TiTc specific for the IQGAP1 neoantigen. Subpopulation analysis prior to peptide stimulation revealed that pTc mainly consisted of memory Tc, whereas TiTc constituted primarily of effector and effector memory Tc. This allows to infer that TiTc reacting to neoantigens and cryptic peptides must be present within the tumor microenvironment. CONCLUSION: These results prove that the analyzed CRC present both mutated neoantigenic and cryptic peptides on their HLA class I molecules. Moreover, stimulation with these peptides significantly strengthened tumor cell recognition by Tc. Since the overall number of neoantigenic peptides identifiable by HLA ligandome analysis hitherto is small, our data emphasize the relevance of increasing the target scope for cancer vaccines by the cryptic peptide category.


Assuntos
Neoplasias Colorretais , Peptídeos , Humanos , Contagem de Linfócitos , ELISPOT , Células Apresentadoras de Antígenos , Microambiente Tumoral
3.
Eur J Med Chem ; 244: 114876, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36343429

RESUMO

Chagas disease is a major public health problem caused by Trypanosoma cruzi, with an estimated 6-7 million people infected and 70 million at risk of infection. T. brucei gambiense and T. brucei rhodesiense are two subspecies of related parasites that cause human African trypanosomiasis, a neglected tropical disease with also millions of people at risk of infection. Pharmacotherapy for both diseases suffers from low efficacy, side effects, or drug resistance. Recently, we reported a noncovalent competitive inhibitor of cruzain (IC50 26 µM, Ki 3 µM) and TbrCatL (IC50 50 µM), two cysteine proteases considered promising drug targets for trypanosomiasis. Here, we describe the design and synthesis of derivatives of our lead compound. The new thiosemicarbazone derivatives showed potency in the nanomolar concentration range against the two enzymes, but they were later characterized as aggregators. Nevertheless, the thiosemicarbazone derivatives showed promising antiparasitic activities against T. b. brucei (EC50 13-49.7 µM) and T. cruzi (EC50 0.027-0.59 µM) under in vitro conditions. The most active thiosemicarbazone was 200-fold more potent than the current anti-chagasic drug, benznidazole, and showed a selectivity index of 370 versus myoblast cells. We have identified an excellent candidate for further optimization and in vivo studies.


Assuntos
Doença de Chagas , Tiossemicarbazonas , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Tiossemicarbazonas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Relação Estrutura-Atividade , Doença de Chagas/tratamento farmacológico
4.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457111

RESUMO

The aberrant activation of the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway is common in pancreatic ductal adenocarcinomas (PDAC). The application of inhibitors against PI3K and AKT has been considered as a therapeutic option. We investigated PDAC cell lines exposed to increasing concentrations of MK-2206 (an AKT1/2/3 inhibitor) and Buparlisib (a pan-PI3K inhibitor). Cell proliferation, metabolic activity, biomass, and apoptosis/necrosis were evaluated. Further, whole-exome sequencing (WES) and RNA sequencing (RNA-seq) were performed to analyze the recurrent aberrations and expression profiles of the inhibitor target genes and the genes frequently mutated in PDAC (Kirsten rat sarcoma virus (KRAS), Tumor protein p53 (TP53)). MK-2206 and Buparlisib demonstrated pronounced cytotoxic effects and limited cell-line-specific effects in cell death induction. WES revealed two sequence variants within the direct target genes (PIK3CA c.1143C > G in Colo357 and PIK3CD c.2480C > G in Capan-1), but a direct link to the Buparlisib response was not observed. RNA-seq demonstrated that the expression level of the inhibitor target genes did not affect the efficacy of the corresponding inhibitors. Moreover, increased resistance to MK-2206 was observed in the analyzed cell lines carrying a KRAS variant. Further, increased resistance to both inhibitors was observed in SU.86.86 carrying two TP53 missense variants. Additionally, the presence of the PIK3CA c.1143C > G in KRAS-variant-carrying cell lines was observed to correlate with increased sensitivity to Buparlisib. In conclusion, the present study reveals the distinct antitumor effects of PI3K/AKT pathway inhibitors against PDAC cell lines. Aberrations in specific target genes, as well as KRAS and TP53, individually or together, affect the efficacy of the two PI3K/AKT pathway inhibitors.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Aminopiridinas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Compostos Heterocíclicos com 3 Anéis , Humanos , Morfolinas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas
5.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35457227

RESUMO

Casein kinase II (CK2) and cyclin-dependent kinases (CDKs) frequently interact within multiple pathways in pancreatic ductal adenocarcinoma (PDAC). Application of CK2- and CDK-inhibitors have been considered as a therapeutic option, but are currently not part of routine chemotherapy regimens. We investigated ten PDAC cell lines exposed to increasing concentrations of silmitasertib and dinaciclib. Cell proliferation, metabolic activity, biomass, and apoptosis/necrosis were evaluated, and bioinformatic clustering was used to classify cell lines into sensitive groups based on their response to inhibitors. Furthermore, whole exome sequencing (WES) and RNA sequencing (RNA-Seq) was conducted to assess recurrent mutations and the expression profile of inhibitor targets and genes frequently mutated in PDAC, respectively. Dinaciclib and silmitasertib demonstrated pronounced and limited cell line specific effects in cell death induction, respectively. WES revealed no genomic variants causing changes in the primary structure of the corresponding inhibitor target proteins. RNA-Seq demonstrated that the expression of all inhibitor target genes was higher in the PDAC cell lines compared to non-neoplastic pancreatic tissue. The observed differences in PDAC cell line sensitivity to silmitasertib or dinaciclib did not depend on target gene expression or the identified gene variants. For the PDAC hotspot genes kirsten rat sarcoma virus (KRAS) and tumor protein p53 (TP53), three and eight variants were identified, respectively. In conclusion, both inhibitors demonstrated in vitro efficacy on the PDAC cell lines. However, aberrations and expression of inhibitor target genes did not appear to affect the efficacy of the corresponding inhibitors. In addition, specific aberrations in TP53 and KRAS affected the efficacy of both inhibitors.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Caseína Quinase II/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Óxidos N-Cíclicos , Humanos , Indolizinas , Naftiridinas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fenazinas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Compostos de Piridínio , Neoplasias Pancreáticas
6.
Cancers (Basel) ; 13(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884989

RESUMO

Based on our research group's large biobank of colorectal cancers (CRC), we here describe the ongoing activity of establishing a high quality assured PDX biobank for more than 100 individual CRC cases. This includes sufficient numbers of vitally frozen (n > 30 aliquots) and snap frozen (n > 5) backups, "ready to use". Additionally, PDX tumor pieces were paraffin embedded. At the current time, we have completed 125 cases. This resource allows histopathological examinations, molecular characterizations, and gene expression analysis. Due to its size, different issues of interest can be addressed. Most importantly, the application of low-passage, cryopreserved, and well-characterized PDX for in vivo studies guarantees the reliability of results due to the largely preserved tumor microenvironment. All cases described were molecularly subtyped and genetic identity, in comparison to the original tumor tissue, was confirmed by fingerprint analysis. The latter excludes ambiguity errors between the PDX and the original patient tumor. A cancer hot spot mutation analysis was performed for n = 113 of the 125 cases entities. All relevant CRC molecular subtypes identified so far are represented in the Hansestadt Rostock CRC (HROC)-Xenobank. Notably, all models are available for cooperative research approaches.

7.
Diagnostics (Basel) ; 10(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650631

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in economic and social lockdowns in most countries all over the globe. Early identification of infected individuals is regarded as one of the most important prerequisites for fighting the pandemic and for returning to a 'New Normal'. Large-scale testing is therefore crucial, but is facing several challenges including shortage of sample collection tools and of molecular biological reagents, and the need for safe electronic communication of medical reports. We present the successful establishment of a holistic SARS-CoV-2 testing platform that covers proband registration, sample collection and shipment, sample testing, and report issuing. The RT-PCR-based virus detection, being central to the platform, was extensively validated: sensitivity and specificity were defined as 96.8% and 100%, respectively; intra-run and inter-run precision were <3%. A novel type of sample swab and an in-house-developed RNA extraction system were shown to perform as good as commercially available products. The resulting flexibility guarantees independence from the current bottlenecks in SARS-CoV-2 testing. Based on our technology, we offered testing at local, national, and global levels. In the present study, we report the results from approx. 18,000 SARS-CoV-2 tests in almost 10,000 individuals from a low-frequency SARS-CoV-2 pandemic area in a homogenous geographical region in north-eastern Germany for a period of 10 weeks (21 March to 31 May 2020). Among the probands, five SARS-CoV-2 positive cases were identified. Comparative analysis of corresponding virus genomes revealed a diverse origin from three of the five currently recognized SARS-CoV-2 phylogenetic clades. Our study exemplifies how preventive SARS-CoV-2 testing can be set up in a rapid and flexible manner. The application of our test has enabled a safe maintenance/resume of critical local infrastructure, e.g., nursing homes where more than 5000 elderlies and caretakers got tested. The strategy outlined by the present study may serve as a blueprint for the implementation of large-scale preventive SARS-CoV-2 testing elsewhere.

8.
An Acad Bras Cienc ; 90(1 Suppl 2): 1215-1231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29791525

RESUMO

Combination therapy drugs are considered a fundamental way to control malaria as it mimimizes the risk of emergence of resistance to the individual partner drugs. Consequently, this type of therapy constitutes a driving force for the discovery of new drugs with different modes of action, since this will provide options for combining different drugs to achieve the optimum antimalarial treatment. In this context, a 2,3,8-trisubstitued quinoline compound was found in a high throughput screen (HTS) to show an excellent inhibition of P. falciparum NF54 (IC50 = 22 nM) and low cytotoxicity. We performed a detailed evaluation of the substituents to improve the metabolic stability and solubility liabilities of the original hit and identified derivatives with enhanced physicochemical and/or PK properties and that maintained biological activity. However the high potency was not retained on testing against drug resistant plasmodium strains.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Desenho de Fármacos , Humanos , Testes de Sensibilidade Parasitária , Quinolinas/síntese química , Quinolinas/química , Ratos
9.
Eur J Med Chem ; 126: 929-936, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28002775

RESUMO

Phenotypic HTS campaigns with a blood stage malaria assay have been used to discover novel chemotypes for malaria treatment with potential alternative mechanisms of action compared to existing agents. N1-(5-(3-Chloro-4-fluorophenyl)furan-2-yl)-N3,N3-dimethylpropane-1,3-diamine, 1 was identified as a modest inhibitor of P. falciparum NF54 (IC50 = 875 nM) with an apparent long plasma half-life after high dose oral administration to mice, although the compound later showed poor metabolic stability in liver microsomes through ring- and side chain-oxidation and N-dealkylation. We describe here the synthesis of derivatives of 1, exploring the influence of substitution patterns around the aromatic ring, variations on the alkyl chain and modifications in the core heterocycle, in order to probe potency and metabolic stability, where 4k showed a long half-life in rats.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Desenho de Fármacos , Furanos/química , Furanos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Aminas/química , Animais , Antimaláricos/metabolismo , Estabilidade de Medicamentos , Furanos/metabolismo , Meia-Vida , Humanos , Camundongos , Testes de Sensibilidade Parasitária , Ratos , Relação Estrutura-Atividade
10.
Chem Cent J ; 5: 53, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917164

RESUMO

This paper reports a systematic study of the level of flavan-3-ol monomers during typical processing steps as cacao beans are dried, fermented and roasted and the results of Dutch-processing. Methods have been used that resolve the stereoisomers of epicatechin and catechin. In beans harvested from unripe and ripe cacao pods, we find only (-)-epicatechin and (+)-catechin with (-)-epicatechin being by far the predominant isomer. When beans are fermented there is a large loss of both (-)-epicatechin and (+)-catechin, but also the formation of (-)-catechin. We hypothesize that the heat of fermentation may, in part, be responsible for the formation of this enantiomer. When beans are progressively roasted at conditions described as low, medium and high roast conditions, there is a progressive loss of (-)-epicatechin and (+)-catechin and an increase in (-)-catechin with the higher roast levels. When natural and Dutch-processed cacao powders are analyzed, there is progressive loss of both (-)-epicatechin and (+)-catechin with lesser losses of (-)-catechin. We thus observe that in even lightly Dutch-processed powder, the level of (-)-catechin exceeds the level of (-)-epicatechin. The results indicate that much of the increase in the level of (-)-catechin observed during various processing steps may be the result of heat-related epimerization from (-)-epicatechin. These results are discussed with reference to the reported preferred order of absorption of (-)-epicatechin > (+)-catechin > (-)-catechin. These results are also discussed with respect to the balance that must be struck between the beneficial impact of fermentation and roasting on chocolate flavor and the healthful benefits of chocolate and cocoa powder that result in part from the flavan-3-ol monomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...