Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 14899-14910, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585133

RESUMO

The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.

2.
J Pharm Biomed Anal ; 241: 115982, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237542

RESUMO

In recent years, there has been a growing interest in the therapeutic potential of natural compounds, particularly of plant origin, owing to their demonstrated anti-inflammatory properties. Among these, Anacardium occidentale, commonly known as cashew, has garnered significant attention due to its reputed health benefits. This study aim to establish a correlation between the bioactive compounds contained in the extracts of Anacardium occidentale and its anti-inflammatory activity. Dried Anacardium occidentale leaves powder was used as the extraction matrix. Extraction techniques are maceration, pressurized fluid extraction (PFE), and supercritical fluid extraction (SFE). The preliminary analysis of extracts was made by LC-MS/MS. The Response Surface Methodology (RSM), Principal Component Analysis (PCA), and heat maps were employed to model the influence of experimental conditions on extraction yield and peak area of specific compounds from the plant. To evaluate anti-inflammatory activity, RAW 264.7 cells were cultured, activated with LPS, and treated with varying concentrations of the plant extracts. Cell proliferation was assessed using the XTT assay. Indeed, Anacardium occidentale extracts contain anacardic acids, cardanols, and cardol, with distinct profiles yielded by SFE and ethanol-based methods. RSM shows that temperature and ethanol, as additives to CO2, significantly affect extraction efficiency in both PFE and SFE. Moreover, this composition with SFE demonstrate higher selectivity for specific group of compounds. The extracts exhibit anti-inflammatory properties without cytotoxicity in macrophages, reducing levels of pro-inflammatory proteins COX-2, COX-1, and TLR4 in activated cells. This suggests their potential as anti-inflammatory agents without adverse effects on cell viability or pro-inflammatory protein levels in non-activated cells. Overall, these findings underscore the promising therapeutic potential of Anacardium occidentale extracts in mitigating inflammation, while also providing crucial insights into optimizing the extraction process for targeted compound isolation. Thus, this makes a good prospect for the development of anti-inflammatory drugs from this plant.


Assuntos
Alcaloides , Anacardium , Dióxido de Carbono , Cromatografia Líquida , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Etanol
3.
Molecules ; 27(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163995

RESUMO

In this review, recent advances in the methods of pre-treatment of plant material for the extraction of secondary metabolites with high biological activity are presented. The correct preparation of the material for extraction is as important as the selection of the extraction method. This step should prevent the degradation of bioactive compounds as well as the development of fungi and bacteria. Currently, the methods of preparation are expected to modify the particles of the plant material in such a way that will contribute to the release of bioactive compounds loosely bonded to cell wall polymers. This review presents a wide range of methods of preparing plant material, including drying, freeze-drying, convection drying, microwave vacuum drying, enzymatic processes, and fermentation. The influence of the particular methods on the structure of plant material particles, the level of preserved bioactive compounds, and the possibility of their release during the extraction were highlighted. The plant material pre-treatment techniques used were discussed with respect to the amount of compounds released during extraction as well their application in various industries interested in products with a high content of biologically active compounds, such as the pharmaceutical, cosmetics, and food industries.


Assuntos
Dessecação/métodos , Manipulação de Alimentos/métodos , Liofilização/métodos , Plantas/química , Preservação Biológica/métodos , Micro-Ondas , Vácuo
4.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069978

RESUMO

The aim of this research was to provide crucial and useful data about the selection of the optimization criteria of supercritical carbon dioxide extraction of alfalfa at a quarter-technical plant. The correlation between more general output, including total phenolics and flavonoids content, and a more specified composition of polar constituents was extensively studied. In all alfalfa extracts, polar bioactive constituents were analyzed by both spectrometric (general output) and chromatographic (detailed output) analyses. Eight specific phenolic acids and nine flavonoids were determined. The most dominant were salicylic acid (221.41 µg g-1), ferulic acid (119.73 µg g-1), quercetin (2.23 µg g-1), and apigenin (2.60 µg g-1). For all seventeen analyzed compounds, response surface methodology and analysis of variance were used to provide the optimal conditions of supercritical fluid extraction for each individual constituent. The obtained data have shown that eight of those compounds have a similar range of optimal process parameters, being significantly analogous for optimization based on total flavonoid content.


Assuntos
Dióxido de Carbono/química , Medicago sativa/química , Compostos Fitoquímicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Pressão , Espectrometria de Massas em Tandem , Temperatura
5.
Materials (Basel) ; 14(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064166

RESUMO

To elaborate a complete extraction protocol for the enhanced release of biologically active compounds from plant cells, this study aimed to optimize together the parameters of the supercritical fluid extraction (SFE) process (temperature, pressure, and percentage of cosolvent) and enzymatic treatment of plant material (pH, enzyme concentration, time, and temperature) by response surface methodology (RSM). Medicago sativa L. was selected as a plant material due to its richness in phenolics and flavonoids. HPLC-MS/MS analysis allowed evaluating the content of individual bioactive compounds in obtained extracts. The total content of polyphenolic compounds in the extract obtained after two-step optimization was much higher (546 ± 21 µg/g) than in the extract obtained from non-hydrolyzed material (275 ± 23 µg/g) and in the extract obtained by maceration (162 ± 20 µg/g). Furthermore, it was evidenced that extract with the highest content of polyphenolic compounds can support the cellular antioxidant system both as a free radical scavenger and by stimulating the antioxidant enzyme system.

6.
Molecules ; 25(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365541

RESUMO

The aim of this study was to develop a new comprehensive extraction protocol based on green technology for the enhanced release of polyphenolic compounds from plant cells. In this work, extracts from yerba mate and yellow lupine seed were obtained by using three different extraction techniques: maceration, supercritical fluid extraction with co-solvent (SFE) and enzyme assisted-supercritical fluid extraction with co-solvent (EA-SFE). Several experimental parameters such as time, type of solvent and co-solvent as well as CO2 flow rate were selected to obtain the highest extraction efficiency. The chemical profiles in the obtained extracts and their biological activity were evaluated. HPLC-MS/MS analysis indicated that the level of phenolic compounds in extracts from yerba mate obtained by EA-SFE was approximately five times higher than for maceration and 3.2 times higher than for SFE. In the case of extracts from yellow lupine seed an approximately 5.6-fold increase was observed in comparison with maceration and SFE with 96% MeOH, and 2.9 times for SFE with 96% EtOH. The developed protocol with a mix of enzymes commonly applied in the agricultural industry significantly raises the efficiency of liberation of secondary metabolites.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Antioxidantes/isolamento & purificação , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão , Química Verde , Hidrólise , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Espectrometria de Massas em Tandem
7.
J Sep Sci ; 43(3): 671-680, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31670460

RESUMO

Saponins in plant extracts were indirectly determined by estimation of the content of sapogenins. The first step of determination is extraction with high efficiency. One conventional extraction technique (maceration) and two modern ones (accelerated solvent extraction and supercritical fluid extraction) were compared. Methanol and ethanol were used as solvents or co-solvents. The results were supported by statistical analysis. Saponins were extracted from leaves, roots, and sprouts of Medicago sativa. Acid hydrolysis, purification, and determination by high-performance liquid chromatography with evaporative light scattering detector were used. The content of sapogenins was the highest in the roots. Smaller amounts of sapogenins were found in sprouts and the smallest ones in leaves. The main ingredient was medicagenic acid with mean concentration of 621.8 µg/g in roots, 456.7 µg/g in sprouts, and 471.3 µg/g in leaf extract. The highest content of sapogenins in extract was obtained after maceration with methanol; however, this method is nonselective in relation to biologically active compounds. Due to the possibility of using the obtained extracts with sapogenins in the cosmetic or pharmaceutical industry, the selection of extraction techniques and solvents is a very important aspect. Additionally, the chosen technique should be considered eco-friendly and consistent with the assumptions of "green chemistry."


Assuntos
Fermentação , Medicago sativa/química , Sapogeninas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia com Fluido Supercrítico , Sapogeninas/química , Solventes/química
8.
J Sep Sci ; 42(20): 3243-3252, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31444853

RESUMO

The aim of the present study was to develop an optimization procedure for supercritical fluid extraction parameters, in order to obtain the highest possible yield of sugars and cyclitols from plant material. Response surface methodology based on Box-Behnken design was applied to evaluate the effect of: temperature (40, 60, 80°C), pressure (100, 200, 300 bar), and co-solvent (methanol) percentage (20, 25, 30%). As a result of the optimization process, we found that the highest amount of sugars (15.02 mg/gof dried material) and cyclitols (0.86 mg/g of dried material) was obtained when the following parameters were applied: 80°C, 228 bar, and 30% of methanol. Moreover, co-solvent concentration and temperature had a higher influence onto the obtained amounts compared with the pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...