Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuromuscul Dis ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058450

RESUMO

Background: Genetic factors are involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS) and constitute a link to its association with frontotemporal dementia (FTD). Gene-targeted therapies for some forms of ALS (C9orf72, SOD1) have recently gained momentum. Genetic architecture in Czech ALS patients has not been comprehensively assessed so far. Objective: We aimed to deliver pilot data on the genetic landscape of ALS in our country. Methods: A cohort of patients with ALS (n = 88), recruited from two Czech Neuromuscular Centers, was assessed for hexanucleotide repeat expansion (HRE) in C9orf72 and also for genetic variations in other 36 ALS-linked genes via next-generation sequencing (NGS). Nine patients (10.1%) had a familial ALS. Further, we analyzed two subgroups of sporadic patients - with concomitant FTD (n = 7) and with young-onset of the disease (n = 22). Results: We detected the pathogenic HRE in C9orf72 in 12 patients (13.5%) and three other pathogenic variants in FUS, TARDBP and TBK1, each in one patient. Additional 7 novel and 9 rare known variants with uncertain causal significance have been detected in 15 patients. Three sporadic patients with FTD (42.9%) were harbouring a pathogenic variant (all HRE in C9orf72). Surprisingly, none of the young-onset sporadic patients harboured a pathogenic variant and we detected no pathogenic SOD1 variant in our cohort. Conclusion: Our findings resemble those from other European populations, with the highest prevalence of HRE in the C9orf72 gene. Further, our findings suggest a possibility of a missing genetic variability among young-onset patients.

2.
J Med Genet ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38955476

RESUMO

BACKGROUND: Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS: Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS: We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION: Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.

3.
Clin Genet ; 104(5): 542-553, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526466

RESUMO

Limb girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of muscular dystrophies. The study presents an overview of molecular characteristics of a large cohort of LGMD patients who are representative of the Czech LGMD population. We present 226 LGMD probands in which 433 mutant alleles carrying 157 different variants with a supposed pathogenic effect were identified. Fifty-four variants have been described only in the Czech LGMD population so far. LGMD R1 caplain3-related is the most frequent subtype of LGMD involving 53.1% of patients with genetically confirmed LGMD, followed by LGMD R9 FKRP-related (11.1%), and LGMD R12 anoctamin5-related (7.1%). If we consider identified variants, then all but five were small-scale variants. One large gene deletion was identified in the LAMA2 gene and two deletions in each of CAPN3 and SGCG. We performed comparison our result with other published studies. The results obtained in the Czech LGMD population clearly differ from the outcome of other LGMD populations in two aspects-we have a more significant proportion of patients with LGMD R1 calpain3-related and a smaller proportion of LGMD R2 dysferlin-related.

4.
Neoplasma ; 69(2): 412-424, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35037760

RESUMO

Multiple myeloma (MM) is a heterogeneous hematological malignancy characterized by the uncontrolled clonal proliferation of bone marrow (BM) plasma cells. The poor prognosis of patients is associated with the presence of extramedullary disease (EMD). Previously, different mechanisms involved in the colonization of BM niches by MM cells and their escape during EMD have been described. Thus, we aimed to investigate the expression of selected cytokines in the BM plasma of MM patients as well as EMD patients to reveal novel molecules involved in EMD pathogenesis. Expression of 120 different cytokines was measured in BM plasma of 13 MM and 11 EMD patients using Proteome Profiler Antibody Arrays. The correlation between statistically significant cytokines and clinicopathological parameters of patients was determined using the Spearman correlation analysis. Finally, protein-protein interactions were analyzed, and GO and KEGG pathways enrichment analysis was performed. In total, 27 cytokines were found to be differently expressed between MM and EMD patients. After the Benjamini-Hochberg correction for multiple testing, the statistical significance of two cytokines downregulated in EMD (EGF, BDNF) and six cytokines upregulated in EMD (NAP-2, ADIPOQ, CRP, MIG, BAFF, and THBS1) was maintained. Correlation analysis proved a significant association between the expression of these molecules and selected clinical-pathological features of MM/EMD patients. Protein association network analysis revealed important protein-protein interactions between THBS1/EGF, MIG/NAP-2, THBS1/NAP-2, EGF/NAP-2, and ADIPOQ/CRP. Finally, identified cytokines were proved to be significantly involved in focal adhesion, PI3K/AKT, and MAPK signaling pathways, and regulation of cell development, localization, proliferation, migration, differentiation, immune system processes, and stress response. Obtained results confirm the key function of the BM microenvironment in the pathogenesis of MM and indicate the essential role of numerous cytokines in disease progression and EMD development. However, the exact mechanisms need to be further clarified.


Assuntos
Mieloma Múltiplo , Proteoma , Medula Óssea , Progressão da Doença , Humanos , Mieloma Múltiplo/patologia , Proteômica , Microambiente Tumoral
5.
Cesk Patol ; 57(3): 150-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34551563

RESUMO

Neuromuscular diseases (NMDs) are a clinically and genetically heterogeneous group of diseases. Currently, 608 genes associated with different types of NMD have been identified. Most of these diseases are rare with a very low prevalence. Advance in the identification of genes associated with NMD can be attributed to technological development in an area of next generation sequencing (NGS) and the affordability of this methodical approach. NGS applications can be divided into analysis of (a) a selected set of genes, (b) an exom, and (c) a genome. The identification of pathogenic variants leads to a significant shift in the understanding of the etiopathogenesis of the disease, allows the prediction of the course of the disease, or its targeted treatment, which may be specific for individual types of NMD or even for particular pathogenic sequence variants.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Neuromusculares , Humanos , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA