Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(1): 7-8, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38225351
2.
Plant Cell ; 35(9): 3398-3412, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37309669

RESUMO

Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.


Assuntos
Plastídeos , RNA de Cadeia Dupla , Interferência de RNA , Transgenes/genética , Plastídeos/genética , Plastídeos/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , Inativação Gênica , Nicotiana/genética , Nicotiana/metabolismo
3.
Front Plant Sci ; 13: 906603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693169

RESUMO

Long non-coding RNAs (lncRNAs) are an increasingly studied group of non-protein coding transcripts with a wide variety of molecular functions gaining attention for their roles in numerous biological processes. Nearly 6,000 lncRNAs have been identified in Arabidopsis thaliana but many have yet to be studied. Here, we examine a class of previously uncharacterized lncRNAs termed CONSERVED IN BRASSICA RAPA (lncCOBRA) transcripts that were previously identified for their high level of sequence conservation in the related crop species Brassica rapa, their nuclear-localization and protein-bound nature. In particular, we focus on lncCOBRA1 and demonstrate that its abundance is highly tissue and developmental specific, with particularly high levels early in germination. lncCOBRA1 contains two snoRNAs domains within it, making it the first sno-lincRNA example in a non-mammalian system. However, we find that it is processed differently than its mammalian counterparts. We further show that plants lacking lncCOBRA1 display patterns of delayed germination and are overall smaller than wild-type plants. Lastly, we identify the proteins that interact with lncCOBRA1 and propose a novel mechanism of lincRNA action in which it may act as a scaffold with the RACK1A protein to regulate germination and development, possibly through a role in ribosome biogenesis.

4.
J Am Soc Mass Spectrom ; 33(5): 885-893, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357823

RESUMO

RNA is dynamically modified in cells by a plethora of chemical moieties to modulate molecular functions and processes. Over 140 modifications have been identified across species and RNA types, with the highest density and diversity of modifications found in tRNA (tRNA). The methods used to identify and quantify these modifications have developed over recent years and continue to advance, primarily in the fields of next-generation sequencing (NGS) and mass spectrometry (MS). Most current NGS methods are limited to antibody-recognized or chemically derivatized modifications and have limitations in identifying multiple modifications simultaneously. Mass spectrometry can overcome both of these issues, accurately identifying a large number of modifications in a single run. Here, we present advances in MS data acquisition for the purpose of RNA modification identification and quantitation. Using this approach, we identified multiple tRNA wobble position modifications in Arabidopsis thaliana that are upregulated in salt-stressed growth conditions and may stabilize translation of salt stress induced proteins. This work presents improvements in methods for studying RNA modifications and introduces a possible regulatory role of wobble position modifications in A. thaliana translation.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência , Espectrometria de Massas/métodos , RNA de Transferência/química
5.
Dev Cell ; 56(1): 125-140.e6, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33290723

RESUMO

Although eukaryotic messenger RNAs (mRNAs) normally possess a 5' end N7-methyl guanosine (m7G) cap, a non-canonical 5' nicotinamide adenine dinucleotide (NAD+) cap can tag certain transcripts for degradation mediated by the NAD+ decapping enzyme DXO1. Despite this importance, whether NAD+ capping dynamically responds to specific stimuli to regulate eukaryotic transcriptomes remains unknown. Here, we reveal a link between NAD+ capping and tissue- and hormone response-specific mRNA stability. In the absence of DXO1 function, transcripts displaying a high proportion of NAD+ capping are instead processed into RNA-dependent RNA polymerase 6-dependent small RNAs, resulting in their continued turnover likely to free the NAD+ molecules. Additionally, the NAD+-capped transcriptome is significantly remodeled in response to the essential plant hormone abscisic acid in a mechanism that is primarily independent of DXO1. Overall, our findings reveal a previously uncharacterized and essential role of NAD+ capping in dynamically regulating transcript stability during specific physiological responses.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , NAD/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Proteínas de Ligação a DNA/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Ontologia Genética , Plantas Geneticamente Modificadas , Estabilidade de RNA , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/genética
6.
Plant Direct ; 4(7): e00239, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724893

RESUMO

After transcription, a messenger RNA (mRNA) is further post-transcriptionally regulated by several features including RNA secondary structure and covalent RNA modifications (specifically N6-methyladenosine, m6A). Both RNA secondary structure and m6A have been demonstrated to regulate mRNA stability and translation and have been independently linked to plant responses to soil salinity levels. However, the effect of m6A on regulating RNA secondary structure and the combinatorial interplay between these two RNA features during salt stress response has yet to be studied. Here, we globally identify RNA-protein interactions and RNA secondary structure during systemic salt stress. This analysis reveals that RNA secondary structure changes significantly during salt stress, and that it is independent of global changes in RNA-protein interactions. Conversely, we find that m6A is anti-correlated with RNA secondary structure in a condition-dependent manner, with salt-specific m6A correlated with a decrease in mRNA secondary structure during salt stress. Taken together, we suggest that salt-specific m6A deposition and the associated loss of RNA secondary structure results in increases in mRNA stability for transcripts encoding abiotic stress response proteins and ultimately increases in protein levels from these stabilized transcripts. In total, our comprehensive analyses reveal important post-transcriptional regulatory mechanisms involved in plant long-term salt stress response and adaptation.

7.
Methods Mol Biol ; 1933: 343-361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945196

RESUMO

From the moment of transcription, RNA molecules are continuously bound by RNA-binding proteins (RBPs). While the majority of research has focused on how these RBPs regulate posttranscriptional gene regulation of messenger RNAs (mRNAs), the majority of cellular RNAs do not code for proteins, such as ribosomal RNAs, transfer RNAs, and microRNAs. Since these RNAs do not code for protein, their function is mainly determined by their interactions with RBPs as well as their intramolecular base pairing, or RNA secondary structure. One class of noncoding RNAs termed long noncoding RNAs (lncRNAs) have recently become the subject of intense research interest. To study the function of lncRNAs in eukaryotic cells, it is important to examine both their interactions with RBPs as well as their RNA secondary structure. Protein interaction profile sequencing (PIP-seq) is a genome-wide method that uses structure-specific ribonucleases (RNases) to identify regions of double-stranded and single-stranded RNA as well as regions that are protected from these RNases, which represent sites of RBP binding. This method is a very powerful way to examine RNA-protein interactions and RNA secondary structure of all lncRNAs expressed in cells and tissues and can reveal cell-type-specific or tissue-specific patterns of these RNA features. Here, we give a step-by-step account of performing this technique for comprehensively analyzing RNA-protein interactions and RNA secondary structure in plant transcriptomes.


Assuntos
Arabidopsis/metabolismo , Pegadas de Proteínas , Domínios e Motivos de Interação entre Proteínas , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Conformação de Ácido Nucleico , RNA Longo não Codificante/genética , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Transcriptoma
8.
Cell Rep ; 25(5): 1146-1157.e3, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380407

RESUMO

N6-methyladenosine (m6A) is a dynamic, reversible, covalently modified ribonucleotide that occurs predominantly toward 3' ends of eukaryotic mRNAs and is essential for their proper function and regulation. In Arabidopsis thaliana, many RNAs contain at least one m6A site, yet the transcriptome-wide function of m6A remains mostly unknown. Here, we show that many m6A-modified mRNAs in Arabidopsis have reduced abundance in the absence of this mark. The decrease in abundance is due to transcript destabilization caused by cleavage occurring 4 or 5 nt directly upstream of unmodified m6A sites. Importantly, we also find that, upon agriculturally relevant salt treatment, m6A is dynamically deposited on and stabilizes transcripts encoding proteins required for salt and osmotic stress response. Overall, our findings reveal that m6A generally acts as a stabilizing mark through inhibition of site-specific cleavage in plant transcriptomes, and this mechanism is required for proper regulation of the salt-stress-responsive transcriptome.


Assuntos
Adenosina/análogos & derivados , Arabidopsis/genética , Estabilidade de RNA/genética , Ribonucleotídeos/metabolismo , Adenosina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Sequência Conservada/genética , Exorribonucleases/metabolismo , Metilação/efeitos dos fármacos , Fases de Leitura Aberta/genética , Proteínas de Plantas/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/genética
10.
Curr Opin Plant Biol ; 45(Pt A): 88-95, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29883934

RESUMO

During and after transcription, the fate of an RNA molecule is almost entirely directed by the cohorts of interacting RNA-binding proteins (RBPs). RBPs regulate all stages of the life cycle of a messenger RNA (mRNA) molecule, including splicing, polyadenylation, transport out of the nucleus, RNA stability, and translation. In addition to these functions, RBPs can function to modify or edit the sequences encoded by the RNA. While the sequence for each transcript is determined in the genome, by the time an RNA reaches its final fate, the sequence may have been edited, where one nucleotide is converted to another, or modified, where a chemical group, or sometimes others moieties, are covalently linked to a nucleotide base. These changes to the RNA sequence have major consequences on the function of the RNA. Additionally, variation in the levels of the RBPs that perform the editing or modification can drastically affect the fitness of an organism. Here, we review RBPs that are known to edit or modify RNA ribonucleotides, focusing on the RNA editing ability of the pentatricopeptide repeat (PPR) proteins and the RBPs that modify adenosine to N6- methyladenosine.


Assuntos
Arabidopsis/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Edição de RNA/genética , Edição de RNA/fisiologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-28660659

RESUMO

From the moment of transcription, up through degradation, each RNA transcript is bound by an ever-changing cohort of RNA binding proteins. The binding of these proteins is regulated by both the primary RNA sequence, as well as the intramolecular RNA folding, or secondary structure, of the transcript. Thus, RNA secondary structure regulates many post-transcriptional processes. With the advent of next generation sequencing, several techniques have been developed to generate global landscapes of both RNA-protein interactions and RNA secondary structure. In this review, we describe the current state of the field detailing techniques to globally interrogate RNA secondary structure and/or RNA-protein interaction sites, as well as our current understanding of these features in the transcriptome of the model plant Arabidopsis thaliana. WIREs RNA 2017, 8:e1426. doi: 10.1002/wrna.1426 For further resources related to this article, please visit the WIREs website.


Assuntos
Arabidopsis , Dobramento de RNA , RNA de Plantas , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(14): E2029-38, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001848

RESUMO

Females have a greater immunological advantage than men, yet they are more prone to autoimmune disorders. The basis for this sex bias lies in the X chromosome, which contains many immunity-related genes. Female mammals use X chromosome inactivation (XCI) to generate a transcriptionally silent inactive X chromosome (Xi) enriched with heterochromatic modifications and XIST/Xist RNA, which equalizes gene expression between the sexes. Here, we examine the maintenance of XCI in lymphocytes from females in mice and humans. Strikingly, we find that mature naïve T and B cells have dispersed patterns of XIST/Xist RNA, and they lack the typical heterochromatic modifications of the Xi. In vitro activation of lymphocytes triggers the return of XIST/Xist RNA transcripts and some chromatin marks (H3K27me3, ubiquitin-H2A) to the Xi. Single-cell RNA FISH analysis of female T cells revealed that the X-linked immunity genes CD40LG and CXCR3 are biallelically expressed in some cells. Using knockout and knockdown approaches, we find that Xist RNA-binding proteins, YY1 and hnRNPU, are critical for recruitment of XIST/Xist RNA back to the Xi. Furthermore, we examined B cells from patients with systemic lupus erythematosus, an autoimmune disorder with a strong female bias, and observed different XIST RNA localization patterns, evidence of biallelic expression of immunity-related genes, and increased transcription of these genes. We propose that the Xi in female lymphocytes is predisposed to become partially reactivated and to overexpress immunity-related genes, providing the first mechanistic evidence to our knowledge for the enhanced immunity of females and their increased susceptibility for autoimmunity.


Assuntos
Linfócitos/metabolismo , Inativação do Cromossomo X , Animais , Feminino , Humanos , Imunidade/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária , Masculino , Camundongos , RNA Longo não Codificante/genética , RNA Mensageiro/genética
13.
Genes Dev ; 29(20): 2168-82, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26450910

RESUMO

Thousands of eukaryotic protein-coding genes are noncanonically spliced to produce circular RNAs. Bioinformatics has indicated that long introns generally flank exons that circularize in Drosophila, but the underlying mechanisms by which these circular RNAs are generated are largely unknown. Here, using extensive mutagenesis of expression plasmids and RNAi screening, we reveal that circularization of the Drosophila laccase2 gene is regulated by both intronic repeats and trans-acting splicing factors. Analogous to what has been observed in humans and mice, base-pairing between highly complementary transposable elements facilitates backsplicing. Long flanking repeats (∼ 400 nucleotides [nt]) promote circularization cotranscriptionally, whereas pre-mRNAs containing minimal repeats (<40 nt) generate circular RNAs predominately after 3' end processing. Unlike the previously characterized Muscleblind (Mbl) circular RNA, which requires the Mbl protein for its biogenesis, we found that Laccase2 circular RNA levels are not controlled by Mbl or the Laccase2 gene product but rather by multiple hnRNP (heterogeneous nuclear ribonucleoprotein) and SR (serine-arginine) proteins acting in a combinatorial manner. hnRNP and SR proteins also regulate the expression of other Drosophila circular RNAs, including Plexin A (PlexA), suggesting a common strategy for regulating backsplicing. Furthermore, the laccase2 flanking introns support efficient circularization of diverse exons in Drosophila and human cells, providing a new tool for exploring the functional consequences of circular RNA expression across eukaryotes.


Assuntos
Drosophila melanogaster/genética , Regulação Enzimológica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Íntrons/genética , Lacase/biossíntese , Lacase/genética , RNA/genética , Animais , Pareamento de Bases , Proteínas de Drosophila/genética , Humanos , Repetições de Microssatélites/genética , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Fatores de Processamento de Serina-Arginina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...