Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Allergy ; 79(1): 184-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37815010

RESUMO

BACKGROUND: Virus-like particle (VLP) Peanut is a novel immunotherapeutic vaccine candidate for the treatment of peanut allergy. The active pharmaceutical ingredient represents cucumber mosaic VLPs (CuMVTT -VLPs) that are genetically fused with one of the major peanut allergens, Ara h 2 (CuMVTT -Ara h 2). We previously demonstrated the immunogenicity and the protective capacity of VLP Peanut-based immunization in a murine model for peanut allergy. Moreover, a Phase I clinical trial has been initiated using VLP Peanut material manufactured following a GMP-compliant manufacturing process. Key product characterization studies were undertaken here to understand the role and contribution of critical quality attributes that translate as predictive markers of immunogenicity and protective efficacy for clinical vaccine development. METHOD: The role of prokaryotic RNA encapsulated within VLP Peanut on vaccine immunogenicity was assessed by producing a VLP Peanut batch with a reduced RNA content (VLP Peanut low RNA). Immunogenicity and peanut allergen challenge studies were conducted with VLP Peanut low RNA, as well as with VLP Peanut in WT and TLR 7 KO mice. Furthermore, mass spectrometry and SDS-PAGE based methods were used to determine Ara h 2 antigen density on the surface of VLP Peanut particles. This methodology was subsequently applied to investigate the relationship between Ara h 2 antigen density and immunogenicity of VLP Peanut. RESULTS: A TLR 7 dependent formation of Ara h 2 specific high-avidity IgG antibodies, as well as a TLR 7 dependent change in the dominant IgG subclass, was observed following VLP Peanut vaccination, while total allergen-specific IgG remained relatively unaffected. Consistently, a missing TLR 7 signal caused only a weak decrease in allergen tolerability after vaccination. In contrast, a reduced RNA content for VLP Peanut resulted in diminished total Ara h 2 specific IgG responses, followed by a significant impairment in peanut allergen tolerability. The discrepant effect on allergen tolerance caused by an absent TLR 7 signal versus a reduced RNA content is explained by the observation that VLP Peanut-derived RNA not only stimulates TLR 7 but also TLR 3. Additionally, a strong correlation was observed between the number of Ara h 2 antigens displayed on the surface of VLP Peanut particles and the vaccine's immunogenicity and protective capacity. CONCLUSIONS: Our findings demonstrate that prokaryotic RNA encapsulated within VLP Peanut, including antigen density of Ara h 2 on viral particles, are key contributors to the immunogenicity and protective capacity of the vaccine. Thus, antigenicity and RNA content are two critical quality attributes that need to be determined at the stage of manufacturing, providing robust information regarding the immunogenicity and protective capacity of VLP Peanut in the mouse which has translational relevance to the human setting.


Assuntos
Hipersensibilidade a Amendoim , Vacinas de Partículas Semelhantes a Vírus , Humanos , Animais , Camundongos , Hipersensibilidade a Amendoim/prevenção & controle , Receptor 7 Toll-Like , Alérgenos , Arachis , Imunoglobulina G , RNA , Antígenos de Plantas
2.
Clin Transl Allergy ; 13(7): e12274, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37488734

RESUMO

BACKGROUND: The allergists´ tool box in cat allergy management is limited. Clinical studies have shown that holo beta-lactoglobulin (holoBLG) can restore micronutritional deficits in atopic immune cells and alleviate allergic symptoms in a completely allergen-nonspecific manner. With this study, we aimed to provide proof of principle in cat allergy. METHODS: A novel challenge protocol for cat allergy in a standardized ECARF allergen exposure chamber (AEC) was developed. In an open pilot study (NCT05455749), patients with clinically relevant cat allergy were provoked with cat allergen for 120 min in the AEC before and after a 3-month intervention phase (holoBLG lozenge 2x daily). Nasal, conjunctival, bronchial, and pruritus symptoms were scored every 10 min- constituting the total symptom score (TSS). Peak nasal inspiratory flow (PNIF) was measured every 30 min. In addition, a titrated nasal provocation test (NPT) was performed before and after the intervention. Primary endpoint was change in TSS at the end of final exposure compared to baseline. Secondary endpoints included changes in PNIF, NPT, and occurrence of late reactions up to 24 h after exposure. RESULTS: 35 patients (mean age: 40 years) completed the study. Compared to baseline, holoBLG supplementation resulted in significant improvement in median TSS of 50% (p < 0.001), as well as in median nasal flow by 20 L/min (p = 0.0035). 20% of patients reported late reactions after baseline exposure, but 0% after the final exposure. CONCLUSIONS: Cat allergic patients profited from targeted micronutrition with the holoBLG lozenge. As previously seen in other allergies, holoBLG supplementation also induced immune resilience in cat allergies, resulting in significant symptom amelioration.

3.
Allergy ; 78(7): 1980-1996, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36883475

RESUMO

BACKGROUND: Allergy to peanut is one of the leading causes of anaphylactic reactions among food allergic patients. Immunization against peanut allergy with a safe and protective vaccine holds a promise to induce durable protection against anaphylaxis caused by exposure to peanut. A novel vaccine candidate (VLP Peanut), based on virus-like particles (VLPs), is described here for the treatment of peanut allergy. METHODS AND RESULTS: VLP Peanut consists of two proteins: a capsid subunit derived from Cucumber mosaic virus engineered with a universal T-cell epitope (CuMVTT ) and a CuMVTT subunit fused with peanut allergen Ara h 2 (CuMVTT -Ara h 2), forming mosaic VLPs. Immunizations with VLP Peanut in both naïve and peanut-sensitized mice resulted in a significant anti-Ara h 2 IgG response. Local and systemic protection induced by VLP Peanut were established in mouse models for peanut allergy following prophylactic, therapeutic, and passive immunizations. Inhibition of FcγRIIb function resulted in a loss of protection, confirming the crucial role of the receptor in conferring cross protection against peanut allergens other than Ara h 2. CONCLUSION: VLP Peanut can be delivered to peanut-sensitized mice without triggering allergic reactions, while remaining highly immunogenic and offering protection against all peanut allergens. In addition, vaccination ablates allergic symptoms upon allergen challenge. Moreover, the prophylactic immunization setting conferred the protection against subsequent peanut-induced anaphylaxis, showing the potential for preventive vaccination. This highlights the effectiveness of VLP Peanut as a prospective break-through immunotherapy vaccine candidate toward peanut allergy. VLP Peanut has now entered clinical development with the study PROTECT.


Assuntos
Anafilaxia , Hipersensibilidade a Amendoim , Camundongos , Animais , Hipersensibilidade a Amendoim/prevenção & controle , Estudos Prospectivos , Antígenos de Plantas , Alérgenos , Arachis
4.
Probiotics Antimicrob Proteins ; 15(4): 868-879, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113319

RESUMO

Sensing of the intestinal microbiota by the host immune system is important to induce protective immune responses. Hence, modification of the gut microbiota might be able to prevent or treat allergies, mediated by proinflammatory Th2 immune responses. The aim was to investigate the ex vivo immunomodulatory effects of the synbiotics Pollagen® and Kallergen®, containing the probiotic bacterial strains Lactobacillus, Lacticaseibacillus and Bifidobacterium, in the context of grass pollen allergy. Peripheral blood mononuclear cells (PBMCs) from grass pollen-allergic patients and healthy controls were stimulated with grass pollen extract (GPE) and synbiotics and Gata3 expression and cytokine secretion analyzed. Monocyte-derived dendritic cells (MoDCs) cells were matured in the presence of GPE and synbiotics, co-cultured with autologous naïve T cells and maturation markers and cytokine secretion analyzed. GPE stimulation of PBMCs from grass pollen-allergic patients resulted in a significant higher production of the Th2 cytokines IL-4, IL-5, IL-9 and IL-13 compared to healthy controls. Gata3+CD4+ T cell induction was independent of the allergic status. The synbiotics promoted IL-10 and IFN-γ secretion and downregulated the GPE-induced Th2-like phenotype. Co-culturing naïve T cells with MoDCs, matured in the presence of GPE and synbiotics, shifted the GPE-induced Th2 cytokine release towards Th1-Th17-promoting conditions in allergic subjects. The investigated synbiotics are effective in downregulating the GPE-induced Th2 immune response in PBMCs from grass pollen-allergic patients as well as in autologous MoDC-T cell stimulation assays. In addition to increased IL-10 release, the data indicates a shift from a Th2- to a more Th1- and Th17-like phenotype.


Assuntos
Bifidobacterium , Células Dendríticas , Leucócitos Mononucleares , Rinite Alérgica Sazonal , Simbióticos , Humanos , Bifidobacterium/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Lacticaseibacillus/imunologia , Lactobacillus/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Poaceae/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/microbiologia , Imunomodulação/imunologia , Células Cultivadas
5.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100311

RESUMO

INTRODUCTION: Intratumoral injections of novel therapeutics can activate tumor antigen-specific T cells for locoregional tumor control and may even induce durable systemic protection (against distant metastases) via recirculating T cells. Here we explored the possibility of a universal immunotherapy that promotes T-cell responses in situ and beyond, upon intratumoral injection of nanoparticles formulated with micron-sized crystals. METHODS: Cucumber mosaic virus-like particles containing a tetanus toxin peptide (CuMVTT) were formulated with microcrystalline tyrosine (MCT) adjuvant and injected directly in B16F10 melanoma tumors. To further enhance immunogenicity, we loaded the nanoparticles with a TLR7/8 ligand and incorporated a universal tetanus toxin T-helper cell peptide. We assessed therapeutic efficacy and induction of local and systemic immune responses, including RNA sequencing, providing broad insight into the tumor microenvironment and correlates of protection. RESULTS: MCT crystals were successfully decorated with CuMVTT nanoparticles. This 'immune-enhancer' formed immunogenic depots in injected tumors, enhanced polyfunctional CD8+ and CD4+ T cells, and inhibited B16F10 tumor growth locally and systemically. Local inflammation and immune responses were associated with upregulation of genes involved in complement activation and collagen formation. CONCLUSIONS: Our new immune-enhancer turned immunologically cold tumors into hot ones and inhibited local and distant tumor growth. This type of immunotherapy does not require the identification of (patient-individual) relevant tumor antigens. It is well tolerated, non-infectious, and affordable, and can readily be upscaled for future clinical testing and broad application in melanoma and likely other solid tumors.


Assuntos
Melanoma , Nanopartículas , Animais , Antígenos de Neoplasias , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Camundongos , Toxina Tetânica , Microambiente Tumoral
6.
Toxins (Basel) ; 14(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448893

RESUMO

Allergy to Polistes dominula (European paper wasp) venom is of particular relevance in Southern Europe, potentially becoming a threat in other regions in the near future, and can be effectively cured by venom immunotherapy (VIT). As allergen content in extracts may vary and have an impact on diagnostic and therapeutic approaches, the aim was to compare five therapeutic preparations for VIT of P. dominula venom allergy available in Spain. Products from five different suppliers were analyzed by SDS-PAGE and LC-MS/MS and compared with a reference venom sample. Three products with P. dominula venom and one product with a venom mixture of American Polistes species showed a comparable band pattern in SDS-PAGE as the reference sample and the bands of the major allergens phospholipase A1 and antigen 5 were assignable. The other product, which consists of a mixture of American Polistes species, exhibited the typical band pattern in one, but not in another sample from a second batch. All annotated P. dominula allergens were detected at comparable levels in LC-MS/MS analysis of products containing P. dominula venom. Due to a lack of genomic information on the American Polistes species, the remaining products were not analyzed by this method. The major Polistes allergens were present in comparable amounts in the majority, but not in all investigated samples of venom preparations for VIT of P. dominula venom allergy.


Assuntos
Hipersensibilidade , Vespas , Alérgenos , Animais , Cromatografia Líquida , Dessensibilização Imunológica , Espectrometria de Massas em Tandem , Venenos de Vespas
7.
J Allergy Clin Immunol Pract ; 10(7): 1889-1902.e9, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35263681

RESUMO

BACKGROUND: Functional iron deficiency facilitates allergy development and amplifies the symptom burden in people experiencing allergies. Previously we selectively delivered micronutrients to immune cells with ß-lactoglobulin as carrier (holoBLG), resulting in immune resilience and allergy prevention. OBJECTIVE: The clinical efficacy of a food for special medical purposes-lozenge containing ß-lactoglobulin with iron, polyphenols, retinoic acid, and zinc (holoBLG lozenge) was assessed in allergic women. METHODS: In a randomized, double-blind, placebo-controlled pilot study, grass- and/or birch pollen-allergic women (n = 51) were given holoBLG or placebo lozenges over 6 months. Before and after dietary supplementation, participants were nasally challenged and the blood was analyzed for immune and iron parameters. Daily symptoms, medications, pollen concentrations, and well-being were recorded by an electronic health application. RESULTS: Total nasal symptom score after nasal provocations improved by 42% in the holoBLG group versus 13% in the placebo group. The combined symptom medication score during the birch peak and entire season as well as the entire grass pollen season improved in allergic subjects supplemented with the holoBLG lozenge by 45%, 31%, and 40%, respectively, compared with the placebo arm. Participants ingesting the holoBLG lozenge had improved iron status with increased hematocrit values, decreased red cell distribution width, and higher iron levels in circulating CD14+ cells compared with the placebo group. CONCLUSIONS: Targeted micronutrition with the holoBLG lozenge seemed to be effective in elevating the labile iron levels in immune cells and reducing the symptom burden in allergic women in this pilot study. The underlying allergen-independent mechanism provides evidence that dietary nutritional supplementation of the immune system is one of the ways to combat atopy.


Assuntos
Conjuntivite Alérgica , Hipersensibilidade Imediata , Rinite Alérgica Sazonal , Alérgenos , Método Duplo-Cego , Feminino , Humanos , Ferro/uso terapêutico , Lactoglobulinas/uso terapêutico , Projetos Piloto , Poaceae , Comprimidos/uso terapêutico
8.
Allergy ; 77(3): 907-919, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287971

RESUMO

BACKGROUND: Native allergen extracts or chemically modified allergoids are routinely used to induce allergen tolerance in allergen-specific immunotherapy (AIT), although mechanistic side-by-side studies are rare. It is paramount to balance optimal dose and allergenicity to achieve efficacy warranting safety. AIT safety and efficacy could be addressed by allergen dose reduction and/or use of allergoids and immunostimulatory adjuvants, respectively. In this study, immunological effects of experimental house dust mite (HDM) AIT were investigated applying high-dose HDM extract and low-dose HDM allergoids with and without the adjuvants microcrystalline tyrosine (MCT) and monophosphoryl lipid A (MPL) in a murine model of HDM allergy. METHODS: Cellular, humoral, and clinical effects of the different AIT strategies were assessed applying a new experimental AIT model of murine allergic asthma based on physiological, adjuvant-free intranasal sensitization followed by subcutaneous AIT. RESULTS: While low-dose allergoid and high-dose extract AIT demonstrated comparable potency to suppress allergic airway inflammation and Th2-type cytokine secretion of lung-resident lymphocytes and draining lymph node cells, low-dose allergoid AIT was less effective in inducing a potentially protective IgG1 response. Combining low-dose allergoid AIT with MCT or MCT and dose-adjusted MPL promoted Th1-inducing mechanisms and robust B-cell activation counterbalancing the allergic Th2 immune response. CONCLUSION: Low allergen doses induce cellular and humoral mechanisms counteracting Th2-driven inflammation by using allergoids and dose-adjusted adjuvants. In light of safety and efficacy improvement, future therapeutic approaches may use low-dose allergoid strategies to drive cellular tolerance and adjuvants to modulate humoral responses.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade , Adjuvantes Imunológicos , Alérgenos , Alergoides , Animais , Antígenos de Dermatophagoides , Humanos , Hipersensibilidade/terapia , Inflamação , Camundongos , Extratos Vegetais , Pyroglyphidae
9.
Clin Exp Allergy ; 52(3): 426-441, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34773648

RESUMO

BACKGROUND: Previously, the protective farm effect was imitated using the whey protein beta-lactoglobulin (BLG) that is spiked with iron-flavonoid complexes. Here, we formulated for clinical translation a lozenge as food for special medical purposes (FSMP) using catechin-iron complexes as ligands for BLG. The lozenge was tested in vitro and in a therapeutical BALB/c mice model. METHODS: Binding of iron-catechin into BLG was confirmed by spectroscopy and docking calculations. Serum IgE binding of children allergic or tolerating milk was assessed to loaded (holo-) versus empty (apo-) BLG and for human mast cell degranulation. BLG and Bet v 1 double-sensitized mice were orally treated with the holoBLG or placebo lozenge, and immunologically analysed after systemic allergen challenge. Human PBMCs of pollen allergic subjects were flow cytometrically assessed after stimulation with apoBLG or holoBLG using catechin-iron complexes as ligands. RESULTS: One major IgE and T cell epitope were masked by catechin-iron complexes, which impaired IgE binding of milk-allergic children and degranulation of mast cells. In mice, only supplementation with the holoBLG lozenge reduced clinical reactivity to BLG and Bet v 1, promoted Tregs, and suppressed antigen presentation. In allergic subjects, stimulation of PBMCs with holoBLG led to a significant increase of intracellular iron in circulating CD14+ cells with significantly lower expression of HLADR and CD86 compared to their stimulation with apoBLG. CONCLUSION: The FSMP lozenge targeted antigen presenting cells and dampened immune activation in human immune cells and allergic mice in an antigen-non-specific manner, thereby conferring immune resilience against allergic symptoms.


Assuntos
Hipersensibilidade a Leite , Alérgenos , Animais , Suplementos Nutricionais , Fazendas , Humanos , Lactoglobulinas/química , Camundongos , Camundongos Endogâmicos BALB C
10.
World Allergy Organ J ; 14(9): 100578, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34659627

RESUMO

The concept of treatment of an allergy with the offending allergen was introduced more than a century ago. Allergen immunotherapy (AIT) is the only disease modifying treatment of allergic diseases caused by inhalational allergens and insect venoms. Despite this, only few AIT products have reached licensure in the US or an official marketing authorization status in European countries. Moreover, most of these AIT products are provided on an individual patient basis as named patient products (NPP) in Europe, while individualized preparations of (mixed) allergenic extract vials for subcutaneous administration (compounding) is common practice in the US. AIT products are generally considered safe and well tolerated, but the major practical clinical development challenge is to define the optimal dose and prove the efficacy and safety of these products using state-of-the art Phase II and pivotal Phase III studies. In planning Phase II-III AIT studies, a thorough understanding of the study challenges is essential (e.g. variability and non-validated status of subjective primary endpoints, limitations of pollen season definitions) and dogmas of these products (e.g., for sublingual immunotherapy (SLIT) trials double-blinding conditions cannot be maintained, resulting in stronger placebo responses in the active treatment group and inflated treatment effects in Phase III). There is future promise for more objective biomarker endpoints (e.g. basophil activation (CD63 and CD203c), subsets of regulatory dendritic, T and B cells, IL-10-producing group 2 innate lymphoid cells; alone or in combination) to overcome several of these dogmas and challenges; innovation in AIT clinical trials can only progress with integral biomarker research to complement the traditional endpoints in Phase II-III clinical development. The aim of this paper is to provide an overview of these dogmas, challenges and recommendations based on published data, to facilitate the design of Phase III studies and improve the evidence basis of safe and effective AIT products.

11.
Toxins (Basel) ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564620

RESUMO

In this review, we outline and reflect on the important differences between allergen-specific immunotherapy for inhalant allergies (i.e., aeroallergens) and venom-specific immunotherapy (VIT), with a special focus on Venomil® Bee and Wasp. Venomil® is provided as a freeze-dried extract and a diluent to prepare a solution for injection for the treatment of patients with IgE-mediated allergies to bee and/or wasp venom and for evaluating the degree of sensitivity in a skin test. While the materials that make up the product have not changed, the suppliers of raw materials have changed over the years. Here, we consolidate relevant historical safety and efficacy studies that used products from shared manufacture supply profiles, i.e., products from Bayer or Hollister-Stier. We also consider the characterization and standardization of venom marker allergens, providing insights into manufacturing controls that have produced stable and consistent quality profiles over many years. Quality differences between products and their impacts on treatment outcomes have been a current topic of discussion and further research. Finally, we review the considerations surrounding the choice of depot adjuvant most suitable to augmenting VIT.


Assuntos
Alérgenos/isolamento & purificação , Venenos de Abelha/imunologia , Dessensibilização Imunológica/métodos , Dessensibilização Imunológica/estatística & dados numéricos , Hipersensibilidade/terapia , Venenos de Vespas/imunologia , Alérgenos/química , Animais , Abelhas/química , Dessensibilização Imunológica/classificação , Humanos , Vespas/química
12.
World Allergy Organ J ; 14(1): 100494, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33376575

RESUMO

BACKGROUND: Allergic rhinitis/rhinoconjunctivitis is the most common immune disease worldwide, but still largely underestimated, underdiagnosed, and undertreated. Dysbiosis and reduced microbial diversity is linked to the development of allergies, and the immunomodulatory effects of pro- and prebiotics might be used to counteract microbiome dysbiosis in allergy. Adequate symbiotic (multi-strain pro-, plus prebiotic) supplementation can be suggested as a complementary approach in the management of allergic rhinitis. OBJECTIVE: The effects of the daily intake of a symbiotic food supplement (combination of Lactobacillus acidophilus NCFM and Bifidobacterium lactis BL-04 with Fructo-Oligosaccharides) for 4 months in birch pollen allergic rhinoconjunctivitis patients were investigated for the first time in an allergen exposure chamber (AEC) allowing standardised, reproducible pollen exposure before and after intake. METHODS: Eligible patients were exposed to birch pollen (8000 pollen/m³ for 120 min) at the GA2LEN AEC, at baseline (V1) and final visit (V3) outside the season. The Total Symptom Score (TSS) and the scores for nose, eye, bronchial system, and others were evaluated every 10 min during exposure. Other secondary endpoints were the changes in well-being, Peak Nasal Inspiratory Flow (PNIF), lung function parameters, and safety. Co-primary endpoints were differences in Total Nasal Symptom Score (TNSS) and TSS after 120 min of exposure between both visits. Temporal evolution of symptom scores were analysed in an exploratory way using linear mixed effects models. RESULTS: 27 patients (mean age 45 years, 15% male) completed the study. Both co-primary endpoints showed significant improvement after intake of the symbiotic. Median TNSS and TSS were decreased 50% and 80% at 120 min (adjusted p-value = 0.025 and p < 0.01 respectively).All four symptom scores and the personal well-being, improved to a clinically relevant extent over time, visible by a weaker increase in symptoms during 120 min of the final birch pollen exposure. No relevant differences were observed for PNIF, PEF, and spirometry. There were no airway obstructions or lung restrictions before and after both exposures. Late phase reactions after exposure were reduced after V3, documenting a better birch pollen tolerability of the patients. The safety and tolerability profile of the symbiotic food supplement was excellent, no adverse events (AEs) were observed. CONCLUSIONS: This first evaluation of a symbiotic food supplement in an AEC in rhinoconjunctivitis patients with or without asthma induced by birch pollen revealed a significant beneficial effect, harnessing significant improvements of symptoms and well-being while maintaining an excellent safety and tolerability profile.

13.
Front Immunol ; 11: 594911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324411

RESUMO

The concept of adjuvants or adjuvant systems, used in vaccines, exploit evolutionary relationships associated with how the immune system may initially respond to a foreign antigen or pathogen, thus mimicking natural exposure. This is particularly relevant during the non-specific innate stage of the immune response; as such, the quality of this response may dictate specific adaptive responses and conferred memory/protection to that specific antigen or pathogen. Therefore, adjuvants may optimise this response in the most appropriate way for a specific disease. The most commonly used traditional adjuvants are aluminium salts; however, a biodegradable adjuvant, MCT®, was developed for application in the niche area of allergy immunotherapy (AIT), also in combination with a TLR-4 adjuvant-Monophosphoryl Lipid A (MPL®)-producing the first adjuvant system approach for AIT in the clinic. In the last decade, the use and effectiveness of MCT® across a variety of disease models in the preclinical setting highlight it as a promising platform for adjuvant systems, to help overcome the challenges of modern vaccines. A consequence of bringing together, for the first time, a unified view of MCT® mode-of-action from multiple experiments and adjuvant systems will help facilitate future rational design of vaccines while shaping their success.


Assuntos
Adjuvantes Imunológicos , Lipídeo A/análogos & derivados , Tirosina , Vacinas , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/uso terapêutico , Humanos , Lipídeo A/química , Lipídeo A/uso terapêutico , Tirosina/química , Tirosina/uso terapêutico , Vacinas/química , Vacinas/uso terapêutico
14.
Trends Mol Med ; 26(4): 357-368, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32277930

RESUMO

Since the discovery that IgE antibodies mediate allergy, decades of research have unraveled complex mechanisms associated with conventional immunotherapy and the vital protagonists that shape 'immune tolerance' to allergens. Debate exists on what should constitute the dominant effector mechanism in driving rational drug designs for next-generation immunotherapies. As vaccine technology continues to advance, the development of novel vaccines in this area of continued medical need might stand on a threshold of breakthrough inspired by experiments by Dunbar on the passive vaccination of allergic animals more than 100 years ago. In this opinion article, we discuss both novel insights into IgG antibodies as the principle effector modality induced by specific immunotherapy and advances in antigen-carrier design that may catapult allergy treatment into our modern world.


Assuntos
Hipersensibilidade/imunologia , Vacinas/imunologia , Animais , Humanos , Tolerância Imunológica/imunologia , Imunoglobulina G/imunologia , Imunoterapia/métodos , Vacinação/métodos
16.
J Allergy Clin Immunol ; 145(4): 1240-1253.e3, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31866435

RESUMO

BACKGROUND: Peanut allergy is a severe and increasingly frequent disease with high medical, psychosocial, and economic burden for affected patients and wider society. A causal, safe, and effective therapy is not yet available. OBJECTIVE: We sought to develop an immunogenic, protective, and nonreactogenic vaccine candidate against peanut allergy based on virus-like particles (VLPs) coupled to single peanut allergens. METHODS: To generate vaccine candidates, extracts of roasted peanut (Ara R) or the single allergens Ara h 1 or Ara h 2 were coupled to immunologically optimized Cucumber Mosaic Virus-derived VLPs (CuMVtt). BALB/c mice were sensitized intraperitoneally with peanut extract absorbed to alum. Immunotherapy consisted of a single subcutaneous injection of CuMVtt coupled to Ara R, Ara h 1, or Ara h 2. RESULTS: The vaccines CuMVtt-Ara R, CuMVtt-Ara h 1, and CuMVtt-Ara h 2 protected peanut-sensitized mice against anaphylaxis after intravenous challenge with the whole peanut extract. Vaccines did not cause allergic reactions in sensitized mice. CuMVtt-Ara h 1 was able to induce specific IgG antibodies, diminished local reactions after skin prick tests, and reduced the infiltration of the gastrointestinal tract by eosinophils and mast cells after oral challenge with peanut. The ability of CuMVtt-Ara h 1 to protect against challenge with the whole extract was mediated by IgG, as shown via passive IgG transfer. FcγRIIb was required for protection, indicating that immune complexes with single allergens were able to block the allergic response against the whole extract, consisting of a complex allergen mixture. CONCLUSIONS: Our data suggest that vaccination using single peanut allergens displayed on CuMVtt may represent a novel therapy against peanut allergy with a favorable safety profile.


Assuntos
Antígenos de Plantas/genética , Dessensibilização Imunológica/métodos , Proteínas de Membrana/genética , Hipersensibilidade a Amendoim/terapia , Proteínas de Plantas/genética , Vacinas/genética , Vírion/genética , Animais , Antígenos de Plantas/imunologia , Arachis/genética , Cucumovirus/genética , Engenharia Genética , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina E/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Plantas/imunologia , Receptores de IgG/metabolismo , Vacinas/imunologia , Vírion/imunologia
17.
Vaccines (Basel) ; 7(3)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340594

RESUMO

Zika virus (ZIKV) is a flavivirus similar to Dengue virus (DENV) in terms of transmission and clinical manifestations, and usually both viruses are found to co-circulate. ZIKV is usually transmitted by mosquitoes bites, but may also be transmitted by blood transfusion, via the maternal-foetal route, and sexually. After 2015, when the most extensive outbreak of ZIKV had occurred in Brazil and subsequently spread throughout the rest of South America, it became evident that ZIKV infection during the first trimester of pregnancy was associated with microcephaly and other neurological complications in newborns. As a result, the development of a vaccine against ZIKV became an urgent goal. A major issue with DENV vaccines, and therefore likely also with ZIKV vaccines, is the induction of antibodies that fail to neutralize the virus properly and cause antibody-dependent enhancement (ADE) of the infection instead. It has previously been shown that antibodies against the third domain of the envelope protein (EDIII) induces optimally neutralizing antibodies with no evidence for ADE for other viral strains. Therefore, we generated a ZIKV vaccine based on the EDIII domain displayed on the immunologically optimized Cucumber mosaic virus (CuMVtt) derived virus-like particles (VLPs) formulated in dioleoyl phosphatidylserine (DOPS) as adjuvant. The vaccine induced high levels of specific IgG after a single injection. The antibodies were able to neutralise ZIKV without enhancing infection by DENV in vitro. Thus, the here described vaccine based on EDIII displayed on VLPs was able to stimulate production of antibodies specifically neutralizing ZIKV without potentially enhancing disease caused by DENV.

18.
J Immunother Cancer ; 7(1): 137, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122271

RESUMO

Following publication of the original article [1], the author reported an author's family name has been misspelled. Paul Engroff should be replace Paul Engeroff.Furthermore, there are two mistake in two affiliations: 9) Department of dermatology, University of Zurich, Bern, Switzerland and 10) Department of Oncology, University of Lausanne, Bern,Switzerland should be replace with 9) Department of dermatology, University of Zurich, Zurich, Switzerland.10) Department of Oncology, University of Lausanne, Lausanne, Switzerland.

19.
J Immunother Cancer ; 7(1): 114, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027511

RESUMO

BACKGROUND: Induction of strong T cell responses, in particular cytotoxic T cells, is a key for the generation of efficacious therapeutic cancer vaccines which yet, remains a major challenge for the vaccine developing world. Here we demonstrate that it is possible to harness the physiological properties of the lymphatic system to optimize the induction of a protective T cell response. Indeed, the lymphatic system sharply distinguishes between nanoscale and microscale particles. The former reaches the fenestrated lymphatic system via diffusion, while the latter either need to be transported by dendritic cells or form a local depot. METHODS: Our previously developed cucumber-mosaic virus-derived nanoparticles termed (CuMVTT-VLPs) incorporating a universal Tetanus toxoid epitope TT830-843 were assessed for their draining kinetics using stereomicroscopic imaging. A nano-vaccine has been generated by coupling p33 epitope as a model antigen to CuMVTT-VLPs using bio-orthogonal Cu-free click chemistry. The CuMVTT-p33 nano-sized vaccine has been next formulated with the micron-sized microcrystalline tyrosine (MCT) adjuvant and the formed depot effect was studied using confocal microscopy and trafficking experiments. The immunogenicity of the nanoparticles combined with the micron-sized adjuvant was next assessed in an aggressive transplanted murine melanoma model. The obtained results were compared to other commonly used adjuvants such as B type CpGs and Alum. RESULTS: Our results showed that CuMVTT-VLPs can efficiently and rapidly drain into the lymphatic system due to their nano-size of ~ 30 nm. However, formulating the nanoparticles with the micron-sized MCT adjuvant of ~ 5 µM resulted in a local depot for the nanoparticles and a longer exposure time for the immune system. The preclinical nano-vaccine CuMVTT-p33 formulated with the micron-sized MCT adjuvant has enhanced the specific T cell response in the stringent B16F10p33 murine melanoma model. Furthermore, the micron-sized MCT adjuvant was as potent as B type CpGs and clearly superior to the commonly used Alum adjuvant when total CD8+, specific p33 T cell response or tumour protection were assessed. CONCLUSION: The combination of nano- and micro-particles may optimally harness the physiological properties of the lymphatic system. Since the nanoparticles are well defined virus-like particles and the micron-sized adjuvant MCT has been used for decades in allergen-specific desensitization, this approach may readily be translated to the clinic.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Anticâncer/imunologia , Melanoma Experimental/terapia , Nanopartículas/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Vacinas Anticâncer/administração & dosagem , Cucumovirus/imunologia , Feminino , Imunogenicidade da Vacina , Melanoma Experimental/sangue , Melanoma Experimental/imunologia , Camundongos , Tamanho da Partícula , Fragmentos de Peptídeos/imunologia , Linfócitos T/imunologia , Toxoide Tetânico/imunologia , Tirosina/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
20.
World Allergy Organ J ; 12(2): 100012, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937138

RESUMO

BACKGROUND: This study compared a rapid home-based up-dosing schedule for sublingual immunotherapy (SLIT) drops containing tree pollen allergens with two previously established schedules. Furthermore, the clinical effect of the SLIT was investigated with respect to patients' first pollen season under treatment. METHODS: In this open-label, prospective, patient-preference, non-interventional study, local and systemic reactions were compared between three up-dosing groups using a SLIT formulation containing birch, alder, and hazel pollen extracts (ORALVAC® Compact Bäume). Clinical improvement after patients' first season under treatment was analysed using symptom scores, ARIA classification, symptom control, and the use of symptomatic medication and was compared with data from the previous, pre-treatment pollen season. As the real-life study design allowed no placebo group, the late-treated patients (co-seasonal) served as a control, and crowd-sourced symptom data from persons with hay fever were used from a free web-based online diary. RESULTS: In 33 study centres in Germany and Austria, 164 patients were included. The treatment was well tolerated, without difference between the groups during the up-dosing phase. At the end of the assessment, 96.1% rated the tolerability of the treatment as good or very good. Local reactions were mostly mild in severity and no serious adverse events occurred. Symptom scores decreased from the 2016 pollen season to the 2017 pollen season. As for the ARIA classification, 79.0% of patients had persistent, moderate-to-severe rhinitis before treatment, but only 18.6% had the same classification after treatment. In all, 62.4% of patients achieved symptom control, and 34.3% of patients required no symptomatic medication after treatment. The rhinoconjunctivitis score was 34.4% lower for pre-seasonal treatment initiation than for the control group. Crowd-sourced symptom load indices showed that the 2016 season caused slightly more symptoms; however, it is assumed that this difference of 0.3-0.5 (score range 0-10) was of less clinical relevance. CONCLUSION: The treatment administered using the rapid home-based up-dosing schedule was safe and well tolerated. Symptom relief and reduction in medication use were observed during the first pollen season with SLIT. TRIAL REGISTRATION NUMBER: NCT03097432 (clinicaltrials.gov).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...