Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem ; 2(3): 717-732, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38784069

RESUMO

Pyromellitic acid diimides are not as chemically unreactive as conjecturable (and presupposed) from their numerous applications as electron acceptor units or electron carriers in molecular donor-acceptor dyads or triads. Similar to the corresponding phthalimides, electronically excited pyromellitic diimides oxidize alkyl carboxylates in aqueous solution via intermolecular electron transfer (PET) processes, which eventually results in radical-radical combination products, e.g., the benzylation product 6 from N,N'-dimethyl pyromellitic diimide 5. The analogous product 7 was formed with pivalic acid as tert-butyl radical source. One additional product 8 was isolated from alkylation/dearomatization and multiple radical additions, respectively, after prolonged irradiation. In intramolecular versions, from N-carboxyalkylated pyromellitic diimides 9a-e (C1 to C5-spaced), degradation processes were detected, e.g., the cyclization products 10 from the GABA substrate 9c. In sharp contrast to phthalimide photochemistry, the green pyromellitic diimide radical anion was detected here by UV-vis absorption (λabs = 720 nm), EPR (from 9d), and NMR spectroscopy for several intramolecular electron transfer examples. Only the yellow 1,4-quinodial structure is formed from intermolecular PET, which was deduced from the absorption spectra (λabs = 440 nm) and the subsequent chemistry. The pyromellitimide radical anion lives for hours at room temperature in the dark, but is further degraded under photochemical reaction conditions.

2.
Biophys J ; 115(8): 1431-1444, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30292393

RESUMO

The lower critical solution temperature (LCST) of the thermo-responsive engineered elastin-like polypeptide (ELP) biopolymer is being exploited for the thermal targeted delivery of doxorubicin (Dox) to solid tumors. We examine the impact of Dox labeling on the thermodynamic and hydrodynamic behavior of an ELP drug carrier and how Dox influences the liquid-liquid phase separation (LLPS). Turbidity, dynamic light scattering (DLS), and differential scanning calorimetry measurements show that ELP undergoes a cooperative liquid-liquid phase separation from a soluble to insoluble coacervated state that is enhanced by Dox labeling. Circular dichroism measurements show that below the LCST ELP consists of both random coils and temperature-dependent ß-turn structures. Labeling with Dox further enhances ß-turn formation. DLS measurements reveal a significant increase in the hydrodynamic radius of ELP below the LCST consistent with weak self-association. Dox-labeled SynB1-ELP1 (Dox-ELP) has a significant increase in the hydrodynamic radius by DLS measurements that is consistent with stable oligomers and, at high Dox-ELP concentrations, micelle structures. Enhanced association by Dox-ELP is confirmed by sedimentation velocity analytical ultracentrifugation measurements. Both ELP self-association and the ELP inverse phase transition are entropically driven with positive changes in enthalpy and entropy. We show by turbidity and DLS that the ELP phase transition is monophasic, whereas mixtures of ELP and Dox-ELP are biphasic, with Dox-labeled ELP phase changing first and unlabeled ELP partitioning into the coacervate as the temperature is raised. DLS reveals a complex growth in droplet sizes consistent with coalescence and fusion of liquid droplets. Differential scanning calorimetry measurements show a -11 kcal/mol change in enthalpy for Dox-ELP coacervation relative to the unlabeled ELP, consistent with droplet formation being stabilized by favorable enthalpic interactions. We propose that the ELP phase change is initiated by ELP self-association, enhanced by increased Dox-ELP oligomer and micelle formation and stabilized by favorable enthalpic interactions in the liquid droplets.


Assuntos
Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Elastina/química , Extração Líquido-Líquido/métodos , Peptídeos/administração & dosagem , Transição de Fase , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Doxorrubicina/administração & dosagem , Humanos , Hidrodinâmica , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/isolamento & purificação , Temperatura , Termodinâmica
3.
Biochemistry ; 53(6): 1081-91, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24450599

RESUMO

Elastin-like polypeptides (ELPs) are large, nonpolar polypeptides under investigation as components of a novel drug delivery system. ELPs are soluble at low temperatures, but they desolvate and aggregate above a transition temperature (TT). This aggregation is being utilized for targeting systemically delivered ELP-drug conjugates to heated tumors. We previously examined the structural, thermodynamic, and hydrodynamic properties of ELP[V5G3A2-150] to understand its behavior as a therapeutic agent. In this study, we investigate the effect that adding basic cell-penetrating peptides (CPPs) to ELP[V5G3A2-150] has on the polypeptide's solubility, structure, and aggregation properties. CPPs are known to enhance the uptake of ELP into cultured cells in vitro and into tumor tissue in vivo. Interestingly, the asymmetric addition of basic residues decreased the solubility of ELP[V5G3A2-150], although below the TT we still observed a low level of self-association that increased with temperature. The ΔH of the aggregation process correlates with solubility, suggesting that the basic CPPs stabilize the aggregated state. This is potentially beneficial as the decreased solubility will increase the fraction aggregated and enhance drug delivery efficacy at a heated tumor. Otherwise, the basic CPPs did not significantly alter the biophysical properties of ELP. All constructs were monomeric at low temperatures but self-associate with increasing temperature through an indefinite isodesmic association. This self-association was coupled to a structural transition to type II ß-turns. All constructs reversibly aggregated in an endothermic reaction, consistent with a reaction driven by the release of water.


Assuntos
Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Elastina/química , Hidrodinâmica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Solubilidade , Termodinâmica , Temperatura de Transição
4.
Photochem Photobiol ; 90(2): 313-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24354634

RESUMO

Irreversible photooxidation based on N-O bond fragmentation is demonstrated for N-methoxyheterocycles in both the singlet and triplet excited state manifolds. The energetic requirements for bond fragmentation are studied in detail. Bond fragmentation in the excited singlet manifold is possible for ππ* singlet states with energies significantly larger than the N-O bond dissociation energy of ca 55 kcal mol(-1). For the nπ* triplet states, N-O bond fragmentation does not occur in the excited state for orbital overlap and energetic reasons. Irreversible photooxidation occurs in the singlet states by bond fragmentation followed by electron transfer. Irreversible photooxidation occurs in the triplet states via bimolecular electron transfer to the donor followed by bond fragmentation. Using these two sensitization schemes, donors can be irreversibly oxidized with oxidation potentials ranging from ca 1.6-2.2 V vs SCE. The corresponding N-ethylheterocycles are characterized as conventional reversible photooxidants in their triplet states. The utility of these sensitizers is demonstrated by irreversibly generating the guanosine radical cation in buffered aqueous solution.


Assuntos
Compostos Heterocíclicos/química , Oxidantes/química , Processos Fotoquímicos , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética
5.
Biophys J ; 104(9): 2009-21, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23663844

RESUMO

The therapeutic potential of elastin-like polypeptide (ELP) conjugated to therapeutic compounds is currently being investigated as an approach to target drugs to solid tumors. ELPs are hydrophobic polymers that are soluble at low temperatures and cooperatively aggregate above a transition temperature (TT), allowing for thermal targeting of covalently attached drugs. They have been shown to cooperatively transition from a disordered structure to a repeating type II ß-turn structure, forming a ß-spiral above the TT. Here we present biophysical measurements of the structural, thermodynamic, and hydrodynamic properties of a specific ELP being investigated for drug delivery, ELP[V5G3A2-150]. We examine the biophysical properties below and above the TT to understand and predict the therapeutic potential of ELP-drug conjugates. We observed that below the TT, ELP[V5G3A2-150] is soluble, with an extended conformation consisting of both random coil and heterogeneous ß structures. Sedimentation velocity experiments indicate that ELP[V5G3A2-150] undergoes weak self-association with increasing temperature, and above the TT the hydrophobic effect drives aggregation entropically. These experiments also reveal a previously unreported temperature-dependent critical concentration (Cc) that resembles a solubility constant. Labeling ELP[V5G3A2-150] with fluorescein lowers the TT by 3.5°C at 20 µM, whereas ELP[V5G3A2-150] dissolution in physiological media (fetal bovine serum) increases the TT by ∼2.2°C.


Assuntos
Portadores de Fármacos/química , Elastina/química , Oligopeptídeos/química , Proteínas/química , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Solubilidade , Temperatura
6.
Int J Biol Macromol ; 51(3): 250-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22609682

RESUMO

The present study establishes the effectiveness of natural drug delivery mechanisms and investigates the interactions between drug and its natural carrier. The binding between the isoflavone diadzein (DZN) and the natural carrier hemoglobin (HbA) was studied using optical spectroscopy and molecular dynamics simulations. The inherent fluorescence emission characteristics of DZN along with that of tryptophan (Trp) residues of the protein HbA were exploited to elucidate the binding location and other relevant parameters of the drug inside its delivery vehicle HbA. Stern-Volmer studies at different temperatures indicate that static along with collisional quenching mechanisms are responsible for the quenching of protein fluorescence by the drug. Molecular dynamics and docking studies supported the hydrophobic interactions between ligand and protein, as was observed from spectroscopy. DZN binds between the subunits of HbA, ∼15 Å away from the closest heme group of chain α1, emphasizing the fact that the drug does not interfere with oxygen binding site of HbA.


Assuntos
Hemoglobina A/química , Isoflavonas/química , Simulação de Dinâmica Molecular , Hemoglobina A/metabolismo , Humanos , Isoflavonas/metabolismo , Ligação Proteica , Análise Espectral , Termodinâmica
7.
J Am Chem Soc ; 126(43): 14071-8, 2004 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-15506771

RESUMO

The ultrafast N-O bond fragmentation in a series of N-methoxypyridyl radicals, formed by one-electron reduction of the corresponding N-methoxypyridiniums, has been investigated as potentially barrierless electron-transfer-initiated chemical reactions. A model for the reaction involving the electronic and geometric factors that control the shape of the potential energy surface for the reaction is described. On the basis of this model, molecular structural features appropriate for ultrafast reactivity are proposed. Femtosecond kinetic measurements on these reactions are consistent with a kinetic definition of an essentially barrierless reaction, i.e., that the lifetime of the radical is a few vibrational periods of the fragmenting bond, for the p-methoxy-N-methoxypyridyl radical.

8.
J Am Chem Soc ; 125(48): 14917-24, 2003 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-14640669

RESUMO

Irradiation of biphenyl encapsulated in the cavities of a NaZSM-5 zeolite framework has been reported to result in the formation of an extremely long-lived radical cation. Here, we show that such zeolite encapsulated radical cations can act as irreversible one-electron oxidants for simple alkenes and dienes, in a solid-state analogue to solution-phase cosensitization. Compared to the well-known semiconductor photooxidizers, such as titanium dioxide, the NaZSM-5 zeolite-based solid photooxidants exhibit enhanced selectivity based on oxidation potential, molecular size and shape, and Lewis base character.

9.
J Am Chem Soc ; 124(51): 15225-38, 2002 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-12487598

RESUMO

N-alkoxyheterocycles can act as powerful one-electron acceptors in photochemical electron-transfer reactions. One-electron reduction of these species results in formation of a radical that undergoes N-O bond fragmentation to form an alkoxy radical and a neutral heterocycle. The kinetics of this N-O bond fragmentation reaction have been determined for a series of radicals with varying substituents and extents of delocalization. Rate constants varying over 7 orders of magnitude are obtained. A reaction potential energy surface is described that involves avoidance of a conical intersection. A molecular basis for the variation of the reaction rate constant with radical structure is given in terms of the relationship between the energies of the important molecular orbitals and the reaction potential energy surface. Ab initio and density functional electronic structure calculations provide support for the proposed reaction energy surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...