Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645053

RESUMO

In the last decade cellular senescence, a hallmark of aging, has come into focus for pharmacologically targeting aging processes. Senolytics are one of these interventive strategies that have advanced into clinical trials, creating an unmet need for minimally invasive biomarkers of senescent cell load to identify patients at need for senotherapy. We created a landscape of miRNA and mRNA expression in five human cell types induced to senescence in-vitro and provide proof-of-principle evidence that miRNA expression can track senescence burden dynamically in-vivo using transgenic p21 high senescent cell clearance in HFD fed mice. Finally, we profiled miRNA expression in seven different tissues, total plasma, and plasma derived EVs of young and 25 months old mice. In a systematic analysis, we identified 22 candidate senomiRs with potential to serve as circulating biomarkers of senescence not only in rodents, but also in upcoming human clinical senolytic trials.

2.
Front Pharmacol ; 13: 1078722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578552

RESUMO

Platelets are the main effectors of primary hemostasis but also cause thrombosis in pathological conditions. Antiplatelet drugs are the cornerstone for the prevention of adverse cardiovascular events. Monitoring the extent of platelet inhibition is essential. Currently available platelet function tests come with constraints, limiting use in antiplatelet drug development as well as in clinical routine. With this study, we aim to investigate whether plasma miRNAs might be suitable biomarkers for monitoring antiplatelet treatment. Platelet-poor plasma was obtained from a trial including 87 healthy male volunteers that either received ticagrelor (n = 44) or clopidogrel (n = 43). Blood was collected before drug intake and after 2 h, 6 h, and 24 h. We measured a panel of 11 platelet-enriched miRNAs (thrombomiRs) by RT-qPCR and selected four biomarker candidates (i.e., miR-223-3p, miR-150-5p, miR-126-3p, miR-24-3p). To further characterize those miRNAs, we performed correlation analyses with the number of extracellular vesicles and clotting time dependent on procoagulant vesicles (PPL assay). We show that platelet-enriched miRNAs in the circulation are significantly reduced upon P2Y12-mediated platelet inhibition. This effect occurred fast, reaching its peak after 2 h. Additionally, we demonstrate that higher baseline levels of thrombomiRs are linked to a stronger reduction upon antiplatelet therapy. Finally, we show that miRNAs from our panel might be the cargo of platelet-derived and procoagulant vesicles. In conclusion, we provide evidence that thrombomiR levels change within 2 h after pharmacological platelet inhibition and circulate the body within platelet-derived and procoagulant extracellular vesicles, rendering them potential biomarker candidates for the assessment of in vivo platelet function.

3.
Cells ; 11(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35455934

RESUMO

Dysregulation of platelet function is causally connected to thrombus formation and cardiovascular diseases. Therefore, assessing platelet reactivity is crucial. However, current platelet function tests come with pitfalls, limiting clinical use. Plasma miRNA signatures have been suggested as novel biomarkers for predicting/diagnosing cardiovascular diseases and monitoring antiplatelet therapy. Here, we provide results from a comprehensive study on the feasibility of using circulatory platelet miRNAs as surrogate markers of platelet activation. We performed small RNA-Seq on different blood cell types to confirm known and identify novel platelet-enriched miRNAs and validated a panel of 16 miRNAs using RT-qPCR. To identify the main carrier of these blood-based platelet miRNAs, we enriched and analyzed distinct microvesicle populations. Platelets were stimulated with GPVI and P2Y12 agonists in vitro to monitor the release of the selected miRNAs following activation. Finally, the miRNA panel was also measured in plasma from mice undergoing the Folts intervention (recurrent thrombus formation in the carotid artery). Applying an unbiased bioinformatics-supported workflow to our NGS data, we were able to confirm a panel of previously established miRNA biomarker candidates and identify three new candidates (i.e., miR-199a-3p, miR-151a-5p, and miR-148b-3p). Basal levels of platelet-derived miRNAs in plasma were mainly complexed with proteins, not extracellular vesicles. We show that changes in miRNA levels due to platelet activation are detectable using RT-qPCR. In addition, we highlight limitations of studying the in vitro release of miRNAs from platelets. In vivo thrombosis resulted in significant elevations of platelet-derived miRNA levels in mice. In conclusion, we provide in-depth evidence that activated platelets release miRNAs, resulting in measurable changes in circulatory miRNA levels, rendering them promising biomarker candidates.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Animais , Biomarcadores/metabolismo , Plaquetas/metabolismo , Doenças Cardiovasculares/metabolismo , Camundongos , MicroRNAs/metabolismo , Ativação Plaquetária
4.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163149

RESUMO

The plasma levels of tissue-specific microRNAs can be used as diagnostic, disease severity and prognostic biomarkers for chronic and acute diseases and drug-induced injury. Thereby, the combination of diverse microRNAs into biomarker signatures using multivariate statistics seems especially powerful from the perspective of tissue and condition specific microRNA shedding into the plasma. Although next-generation sequencing (NGS) technology enables one to analyse circulating microRNAs on a genome-scale level, it suffers from potential biases (e.g., adapter ligation bias) and lacks absolute transcript quantitation as well as tailor-made quality controls. In order to develop a robust NGS discovery assay for genome-scale quantitation of circulating microRNAs, we first evaluated the sensitivity, repeatability and ligation bias of four commercially available small RNA library preparation protocols. The protocol from RealSeq Biosciences was selected based on its performance and usability and coupled with a novel panel of exogenous small RNA spike-in controls to enable quality control and absolute quantitation, thus ensuring comparability of data across independent NGS experiments. The established microRNA Next-Generation-Sequencing Discovery Assay (miND) was validated for its relative accuracy, precision, analytical measurement range and sequencing bias and was considered fit-for-purpose for microRNA biomarker discovery. Summarized, all these criteria were met, and thus, our analytical platform is considered fit-for-purpose for microRNA biomarker discovery from biofluids in the setting of any diagnostic, prognostic or patient stratification need. The established miND assay was tested on serum, cerebrospinal fluid (CSF), synovial fluid (SF) and extracellular vesicles (EV) extracted from cell culture medium of primary cells and proved its potential to be used across different sample types.


Assuntos
Biomarcadores/análise , MicroRNA Circulante/análise , Vesículas Extracelulares/metabolismo , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , MicroRNA Circulante/sangue , MicroRNA Circulante/líquido cefalorraquidiano , Humanos
5.
Elife ; 92020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289480

RESUMO

Our knowledge about the repertoire of ribosomal RNA modifications and the enzymes responsible for installing them is constantly expanding. Previously, we reported that NSUN-5 is responsible for depositing m5C at position C2381 on the 26S rRNA in Caenorhabditis elegans. Here, we show that NSUN-1 is writing the second known 26S rRNA m5C at position C2982. Depletion of nsun-1 or nsun-5 improved thermotolerance and slightly increased locomotion at midlife, however, only soma-specific knockdown of nsun-1 extended lifespan. Moreover, soma-specific knockdown of nsun-1 reduced body size and impaired fecundity, suggesting non-cell-autonomous effects. While ribosome biogenesis and global protein synthesis were unaffected by nsun-1 depletion, translation of specific mRNAs was remodeled leading to reduced production of collagens, loss of structural integrity of the cuticle, and impaired barrier function. We conclude that loss of a single enzyme required for rRNA methylation has profound and highly specific effects on organismal development and physiology.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Metiltransferases/metabolismo , Animais , Caenorhabditis elegans , Feminino , Fertilidade/fisiologia , Oogênese/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia
6.
Cells ; 9(8)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824700

RESUMO

Blood-derived microRNA signatures have emerged as powerful biomarkers for predicting and diagnosing cardiovascular disease, cancer, and metabolic disorders. Platelets and platelet-derived microvesicles are a major source of microRNAs. We have previously shown that the inappropriate anticoagulation and storage of blood samples causes substantial platelet activation that is associated with the release of platelet-stored molecules into the plasma. However, it is currently unclear if circulating microRNA levels are affected by artificial platelet activation due to suboptimal plasma preparation. To address this issue, we used a standardized RT-qPCR test for 12 microRNAs (thrombomiR®, TAmiRNA GmbH, Vienna, Austria) that have been associated with cardiovascular and thrombotic diseases and were detected in platelets and/other hematopoietic cells. Blood was prevented from coagulating with citrate-theophylline-adenosine-dipyridamole (CTAD), sodium citrate, or ethylenediaminetetraacetic acid (EDTA) and stored for different time periods either at room temperature or at 4 °C prior to plasma preparation and the subsequent quantification of microRNAs. We found that five microRNAs (miR-191-5p, miR-320a, miR-21-5p, miR-23a-3p, and miR-451a) were significantly increased in the EDTA plasma. Moreover, we observed a time-dependent increase in plasma microRNAs that was most pronounced in the EDTA blood stored at room temperature for 24 h. Furthermore, significant correlations between microRNA levels and plasma concentrations of platelet-stored molecules pointed towards in vitro platelet activation. Therefore, we strongly recommend to (i) use CTAD as an anticoagulant, (ii) process blood samples as quickly as possible, and (iii) store blood samples at 4 °C whenever immediate plasma preparation is not feasible to generate reliable data on blood-derived microRNA signatures.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Coleta de Amostras Sanguíneas/métodos , Dipiridamol/farmacologia , Ácido Edético/farmacologia , MicroRNAs/sangue , MicroRNAs/genética , Citrato de Sódio/farmacologia , Adulto , Biomarcadores/sangue , Doadores de Sangue , Plaquetas/metabolismo , Feminino , Humanos , Masculino , Ativação Plaquetária/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura
7.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423125

RESUMO

Given the high morbidity and mortality of cardiovascular diseases (CVDs), novel biomarkers for platelet reactivity are urgently needed. Ischemic events in CVDs are causally linked to platelets, small anucleate cells important for hemostasis. The major side-effect of antiplatelet therapy are life-threatening bleeding events. Current platelet function tests are not sufficient in guiding treatment decisions. Platelets host a broad spectrum of microRNAs (miRNAs) and are a major source of cell-free miRNAs in the blood stream. Platelet-related miRNAs have been suggested as biomarkers of platelet activation and assessment of antiplatelet therapy responsiveness. Platelets release miRNAs upon activation, possibly leading to alterations of plasma miRNA levels in conjunction with CVD or inadequate platelet inhibition. Unlike current platelet function tests, which measure platelet activation ex vivo, signatures of platelet-related miRNAs potentially enable the assessment of in vivo platelet reactivity. Evidence suggests that some miRNAs are responsive to platelet inhibition, making them promising biomarker candidates. In this review, we explain the secretion of miRNAs upon platelet activation and discuss the potential use of platelet-related miRNAs as biomarkers for CVD and antiplatelet therapy monitoring, but also highlight remaining gaps in our knowledge and uncertainties regarding clinical utility. We also elaborate on technical issues and limitations concerning plasma miRNA quantification.


Assuntos
Doenças Cardiovasculares/sangue , MicroRNA Circulante/genética , MicroRNAs/genética , Ativação Plaquetária/genética , Biomarcadores/sangue , Plaquetas/metabolismo , Plaquetas/patologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Humanos , MicroRNAs/sangue , Inibidores da Agregação Plaquetária/uso terapêutico
8.
Nucleic Acids Res ; 47(22): 11807-11825, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31722427

RESUMO

Modifications of ribosomal RNA expand the nucleotide repertoire and thereby contribute to ribosome heterogeneity and translational regulation of gene expression. One particular m5C modification of 25S ribosomal RNA, which is introduced by Rcm1p, was previously shown to modulate stress responses and lifespan in yeast and other small organisms. Here, we report that NSUN5 is the functional orthologue of Rcm1p, introducing m5C3782 into human and m5C3438 into mouse 28S ribosomal RNA. Haploinsufficiency of the NSUN5 gene in fibroblasts from William Beuren syndrome patients causes partial loss of this modification. The N-terminal domain of NSUN5 is required for targeting to nucleoli, while two evolutionary highly conserved cysteines mediate catalysis. Phenotypic consequences of NSUN5 deficiency in mammalian cells include decreased proliferation and size, which can be attributed to a reduction in total protein synthesis by altered ribosomes. Strikingly, Nsun5 knockout in mice causes decreased body weight and lean mass without alterations in food intake, as well as a trend towards reduced protein synthesis in several tissues. Together, our findings emphasize the importance of single RNA modifications for ribosome function and normal cellular and organismal physiology.


Assuntos
Crescimento e Desenvolvimento/genética , Metiltransferases/genética , Proteínas Musculares/genética , Biossíntese de Proteínas/genética , Animais , Peso Corporal/genética , Crescimento Celular , Proliferação de Células/genética , Células Cultivadas , Criança , Embrião de Mamíferos , Feminino , Deleção de Genes , Células HEK293 , Células HeLa , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...