Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Earth Space Sci ; 9(4): e2021EA001958, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35865721

RESUMO

When a lightning flash is propagating in the atmosphere it is known that especially the negative leaders emit a large number of very high frequency (VHF) radio pulses. It is thought that this is due to streamer activity at the tip of the growing negative leader. In this work, we have investigated the dependence of the strength of this VHF emission on the altitude of such emission for two lightning flashes as observed by the Low Frequency ARray (LOFAR) radio telescope. We find for these two flashes that the extracted amplitude distributions are consistent with a power-law, and that the amplitude of the radio emissions decreases very strongly with source altitude, by more than a factor of 2 from 1 km altitude up to 5 km altitude. In addition, we do not find any dependence on the extracted power-law with altitude, and that the extracted power-law slope has an average around 3, for both flashes.

2.
Sci Rep ; 11(1): 16256, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376724

RESUMO

The common phenomenon of lightning still harbors many secrets such as what are the conditions for lightning initiation and what is driving the discharge to propagate over several tens of kilometers through the atmosphere forming conducting ionized channels called leaders. Since lightning is an electric discharge phenomenon, there are positively and negatively charged leaders. In this work we report on measurements made with the LOFAR radio telescope, an instrument primarily build for radio-astronomy observations. It is observed that a negative leader rather suddenly changes, for a few milliseconds, into a mode where it radiates 100 times more VHF power than typical negative leaders after which it spawns a large number of more typical negative leaders. This mode occurs during the initial stage, soon after initiation, of all lightning flashes we have mapped (about 25). For some flashes this mode occurs also well after initiation and we show one case where it is triggered twice, some 100 ms apart. We postulate that this is indicative of a small (order of 5 km[Formula: see text]) high charge pocket. Lightning thus appears to be initiated exclusively in the vicinity of such a small but dense charge pocket.

3.
Earth Space Sci ; 8(7): e2020EA001523, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435079

RESUMO

Since their introduction 22 years ago, lightning mapping arrays (LMA) have played a central role in the investigation of lightning physics. Even in recent years with the proliferation of digital interferometers and the introduction of the LOw Frequency ARray (LOFAR) radio telescope, LMAs still play an important role in lightning science. LMA networks use a simple windowing technique that records the highest pulse in either 80 µs or 10 µs fixed windows in order to apply a time-of-arrival location technique. In this work, we develop an LMA-emulator that uses lightning data recorded by LOFAR to simulate an LMA, and we use it to test three new styles of pulse windowing. We show that they produce very similar results as the more traditional LMA windowing, implying that LMA lightning mapping results are relatively independent of windowing technique. In addition, each LMA station has its GPS-conditioned clock. While the timing accuracy of GPS receivers has improved significantly over the years, they still significantly limit the timing measurements of the LMA. Recently, new time-of-arrival techniques have been introduced that can be used to self-calibrate systematic offsets between different receiving stations. Applying this calibration technique to a set of data with 32 ns uncertainty, observed by the Colorado LMA, improves the timing uncertainty to 19 ns. This technique is not limited to LMAs and could be used to help calibrate future multi-station lightning interferometers.

4.
J Geophys Res Atmos ; 125(8): e2019JD031433, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32714723

RESUMO

An analysis is presented of electric fields in thunderclouds using a recently proposed method based on measuring radio emission from extensive air shower events during thunderstorm conditions. This method can be regarded as a tomography of thunderclouds using cosmic rays as probes. The data cover the period from December 2011 till August 2014. We have developed an improved fitting procedure to be able to analyze the data. Our measurements show evidence for the main negative-charge layer near the -10° isotherm. This we have seen for a winter as well as for a summer cloud where multiple events pass through the same cloud and also the vertical component of the electric field could be reconstructed. On the day of measurement of some cosmic-ray events showing evidence for strong fields, no lightning activity was detected within 100 km distance. For the winter events, the top heights were between 5 and 6 km, while in the summer, typical top heights of 9 km were seen. Large horizontal components in excess of 70 kV/m of the electric fields are observed in the middle and top layers.

5.
Phys Rev Lett ; 124(10): 105101, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216418

RESUMO

We use the Low Frequency Array (LOFAR) to probe the dynamics of the stepping process of negatively charged plasma channels (negative leaders) in a lightning discharge. We observe that at each step of a leader, multiple pulses of vhf (30-80 MHz) radiation are emitted in short-duration bursts (<10 µs). This is evidence for streamer formation during corona flashes that occur with each leader step, which has not been observed before in natural lightning and it could help explain x-ray emission from lightning leaders, as x rays from laboratory leaders tend to be associated with corona flashes. Surprisingly, we find that the stepping length is very similar to what was observed near the ground, however with a stepping time that is considerably larger, which as yet is not understood. These results will help to improve lightning propagation models, and eventually lightning protection models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...