Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(14)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38830362

RESUMO

Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.


Assuntos
Radiometria , Dosagem Radioterapêutica , Radiometria/métodos , Humanos , Radioterapia/métodos , Doses de Radiação
2.
Phys Med Biol ; 69(9)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38530300

RESUMO

Objective.The successful implementation of FLASH radiotherapy in clinical settings, with typical dose rates >40 Gy s-1, requires accurate real-time dosimetry.Approach.Silicon carbide (SiC) p-n diode dosimeters designed for the stringent requirements of FLASH radiotherapy have been fabricated and characterized in an ultra-high pulse dose rate electron beam. The circular SiC PiN diodes were fabricated at IMB-CNM (CSIC) in 3µm epitaxial 4H-SiC. Their characterization was performed in PTB's ultra-high pulse dose rate reference electron beam. The SiC diode was operated without external bias voltage. The linearity of the diode response was investigated up to doses per pulse (DPP) of 11 Gy and pulse durations ranging from 3 to 0.5µs. Percentage depth dose measurements were performed in ultra-high dose per pulse conditions. The effect of the total accumulated dose of 20 MeV electrons in the SiC diode sensitivity was evaluated. The temperature dependence of the response of the SiC diode was measured in the range 19 °C-38 °C. The temporal response of the diode was compared to the time-resolved beam current during each electron beam pulse. A diamond prototype detector (flashDiamond) and Alanine measurements were used for reference dosimetry.Main results.The SiC diode response was independent both of DPP and of pulse dose rate up to at least 11 Gy per pulse and 4 MGy s-1, respectively, with tolerable deviation for relative dosimetry (<3%). When measuring the percentage depth dose under ultra-high dose rate conditions, the SiC diode performed comparably well to the reference flashDiamond. The sensitivity reduction after 100 kGy accumulated dose was <2%. The SiC diode was able to follow the temporal structure of the 20 MeV electron beam even for irregular pulse estructures. The measured temperature coefficient was (-0.079 ± 0.005)%/°C.Significance.The results of this study demonstrate for the first time the suitability of silicon carbide diodes for relative dosimetry in ultra-high dose rate pulsed electron beams up to a DPP of 11 Gy per pulse.


Assuntos
Compostos Inorgânicos de Carbono , Dosímetros de Radiação , Radiometria , Radiometria/métodos , Compostos de Silício , Elétrons
3.
Med Phys ; 51(2): 1450-1459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37742343

RESUMO

BACKGROUND: The possible emergence of the FLASH effect-the sparing of normal tissue while maintaining tumor control-after irradiations at dose-rates exceeding several tens of Gy per second, has recently spurred a surge of studies attempting to characterize and rationalize the phenomenon. Investigating and reporting the dose and instantaneous dose-rate of ultra-high dose-rate (UHDR) particle radiotherapy beams is crucial for understanding and assessing the FLASH effect, towards pre-clinical application and quality assurance programs. PURPOSE: The purpose of the present work is to investigate a novel diamond-based detector system for dose and instantaneous dose-rate measurements in UHDR particle beams. METHODS: Two types of diamond detectors, a microDiamond (PTW 60019) and a diamond detector prototype specifically designed for operation in UHDR beams (flashDiamond), and two different readout electronic chains, were investigated for absorbed dose and instantaneous dose-rate measurements. The detectors were irradiated with a helium beam of 145.7 MeV/u under conventional and UHDR delivery. Dose-rate delivery records by the monitoring ionization chamber and diamond detectors were studied for single spot irradiations. Dose linearity at 5 cm depth and in-depth dose response from 2 to 16 cm were investigated for both measurement chains and both detectors in a water tank. Measurements with cylindrical and plane-parallel ionization chambers as well as Monte-Carlo simulations were performed for comparisons. RESULTS: Diamond detectors allowed for recording the temporal structure of the beam, in good agreement with the one obtained by the monitoring ionization chamber. A better time resolution of the order of few µs was observed as compared to the approximately 50 µs of the monitoring ionization chamber. Both diamonds detectors show an excellent linearity response in both delivery modalities. Dose values derived by integrating the measured instantaneous dose-rates are in very good agreement with the ones obtained by the standard electrometer readings. Bragg peak curves confirmed the consistency of the charge measurements by the two systems. CONCLUSIONS: The proposed novel dosimetric system allows for a detailed investigation of the temporal evolution of UHDR beams. As a result, reliable and accurate determinations of dose and instantaneous dose-rate are possible, both required for a comprehensive characterization of UHDR beams and relevant for FLASH effect assessment in clinical treatments.


Assuntos
Diamante , Hélio , Diamante/química , Hélio/uso terapêutico , Radiometria , Método de Monte Carlo
4.
Med Phys ; 51(3): 2251-2262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37847027

RESUMO

BACKGROUND: Radiotherapy with charged particles at high dose and ultra-high dose rate (uHDR) is a promising technique to further increase the therapeutic index of patient treatments. Dose rate is a key quantity to predict the so-called FLASH effect at uHDR settings. However, recent works introduced varying calculation models to report dose rate, which is susceptible to the delivery method, scanning path (in active beam delivery) and beam intensity. PURPOSE: This work introduces an analytical dose rate calculation engine for raster scanned charged particle beams that is able to predict dose rate from the irradiation plan and recorded beam intensity. The importance of standardized dose rate calculation methods is explored here. METHODS: Dose is obtained with an analytical pencil beam algorithm, using pre-calculated databases for integrated depth dose distributions and lateral penumbra. Dose rate is then calculated by combining dose information with the respective particle fluence (i.e., time information) using three dose-rate-calculation models (mean, instantaneous, and threshold-based). Dose rate predictions for all three models are compared to uHDR helium ion beam (145.7 MeV/u, range in water of approximatively 14.6 cm) measurements performed at the Heidelberg Ion Beam Therapy Center (HIT) with a diamond-detector prototype. Three scanning patterns (scanned or snake-like) and four field sizes are used to investigate the dose rate differences. RESULTS: Dose rate measurements were in good agreement with in-silico generated distributions using the here introduced engine. Relative differences in dose rate were below 10% for varying depths in water, from 2.3 to 14.8 cm, as well as laterally in a near Bragg peak area. In the entrance channel of the helium ion beam, dose rates were predicted within 7% on average for varying irradiated field sizes and scanning patterns. Large differences in absolute dose rate values were observed for varying calculation methods. For raster-scanned irradiations, the deviation between mean and threshold-based dose rate at the investigated point was found to increase with the field size up to 63% for a 10 mm × 10 mm field, while no significant differences were observed for snake-like scanning paths. CONCLUSIONS: This work introduces the first dose rate calculation engine benchmarked to instantaneous dose rate, enabling dose rate predictions for physical and biophysical experiments. Dose rate is greatly affected by varying particle fluence, scanning path, and calculation method, highlighting the need for a consensus among the FLASH community on how to calculate and report dose rate in the future. The here introduced engine could help provide the necessary details for the analysis of the sparing effect and uHDR conditions.


Assuntos
Hélio , Terapia com Prótons , Humanos , Hélio/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Benchmarking , Método de Monte Carlo , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Íons , Água
5.
Phys Med Biol ; 68(17)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37494946

RESUMO

Objective.A reliable determination of the instantaneous dose rate (I-DR) delivered in FLASH radiotherapy treatments is believed to be crucial to assess the so-called FLASH effect in preclinical and biological studies. At present, no detectors nor real-time procedures are available to do that in ultra high dose rate (UH-DR) electron beams, typically consisting ofµs pulses characterized by I-DRs of the order of MGy/s. A dosimetric system is proposed possibly overcoming the above reported limitation, based on the recently developed flashDiamond (fD) detector (model 60025, PTW-Freiburg, Germany).Approach.A dosimetric system is proposed, based on a flashDiamond detector prototype, properly modified and adapted for very fast signal transmission. It was used in combination with a fast transimpedance amplifier and a digital oscilloscope to record the temporal traces of the pulses delivered by an ElectronFlash linac (SIT S.p.A., Italy). The proposed dosimetric systems was investigated in terms of the temporal characteristics of its response and the capability to measure the absolute delivered dose and instantaneous dose rate (I-DR). A 'standard' flashDiamond was also investigated and its response compared with the one of the specifically designed prototype.Main results. Temporal traces recorded in several UH-DR irradiation conditions showed very good signal to noise ratios and rise and decay times of the order of a few tens ns, faster than the ones obtained by the current transformer embedded in the linac head. By analyzing such signals, a calibration coefficient was derived for the fD prototype and found to be in agreement within 1% with the one obtained under reference60Co irradiation. I-DRs as high as about 2 MGy s-1were detected without any undesired saturation effect. Absolute dose per pulse values extracted by integrating the I-DR signals were found to be linear up to at least 7.13 Gy and in very good agreement with the ones obtained by connecting the fD to a UNIDOS electrometer (PTW-Freiburg, Germany). A good short term reproducibility of the linac output was observed, characterized by a pulse-to-pulse variation coefficient of 0.9%. Negligible differences were observed when replacing the fD prototype with a standard one, with the only exception of a somewhat slower response time for the latter detector type.Significance.The proposed fD-based system was demonstrated to be a suitable tool for a thorough characterization of UH-DR beams, providing accurate and reliable time resolved I-DR measurements from which absolute dose values can be straightforwardly derived.


Assuntos
Diamante , Elétrons , Reprodutibilidade dos Testes , Radiometria/métodos , Calibragem
6.
Phys Med ; 104: 10-17, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356499

RESUMO

PURPOSE: Investigating and understanding of the underlying mechanisms affecting the charge collection efficiency (CCE) of vented ionization chambers under ultra-high dose rate pulsed electron radiation. This is an important step towards real-time dosimetry with ionization chambers in FLASH radiotherapy. METHODS: Parallel-plate ionization chambers (PPIC) with three different electrode distances were build and investigated with electron beams with ultra-high dose-per-pulse (DPP) up to 5.4 Gy. The measurements were compared with simulations. The experimental determination of the CCE was done by comparison against the reference dose based on alanine dosimetry. The numerical solution of a system of partial differential equations taking into account charge creations by the radiation, their transport and reaction in an applied electric field was used for the simulations of the CCE and the underlying effects. RESULTS: A good agreement between the experimental results and the simulated CCE could be achieved. The recombination losses found under ultra-high DPP could be attributed to a temporal and spatial charge carrier imbalance and the associated electric field distortion. With ultra-thin electrode distances down to 0.25 mm and a suitable chamber voltage, a CCE greater than 99 % could be achieved under the ultra-high DPP conditions investigated. CONCLUSIONS: Well-guarded ultra-thin PPIC are suited for real-time dosimetry under ultra-high DPP conditions. This allows dosimetry also for FLASH RT according to common codes of practice, traceable to primary standards. The numerical approach used allows the determination of appropriate correction factors beyond the DPP ranges where established theories are applicable to account for remaining recombination losses.

7.
Phys Med Biol ; 67(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36162402

RESUMO

Objective. The aim of the presented study is to evaluate the dose response of the PTB's secondary standard system, which is based on alanine and electron spin resonance (ESR) spectroscopy measurement, in ultra-high-pulse-dose-rate (UHPDR) electron beams.Approach. The alanine dosimeter system was evaluated in the PTB's UHPDR electron beams (20 MeV) in a range of 0.15-6.2 Gy per pulse. The relationship between the obtained absorbed dose to water per pulse and the in-beamline charge measurement of the electron pulses acquired using an integrating current transformer (ICT) was evaluated. Monte Carlo simulations were used to determine the beam quality conversion and correction factors required to perform alanine dosimetry.Main results. The beam quality conversion factor from the reference quality60Co to 20 MeV obtained by Monte Carlo simulation, 1.010(1), was found to be within the standard uncertainty of the consensus value, 1.014(5). The dose-to-water relative standard uncertainty was determined to be 0.68% in PTB's UHPDR electron beams.Significance. In this investigation, the dose-response of the PTB's alanine dosimeter system was evaluated in a range of dose per pulse between 0.15 Gy and 6.2 Gy and no evidence of dose-response dependency of the PTB's secondary standard system based on alanine was observed. The alanine/ESR system was shown to be a precise dosimetry system for evaluating absorbed dose to water in UHPDR electron beams.


Assuntos
Alanina , Elétrons , Método de Monte Carlo , Radiometria/métodos , Água/química
8.
Med Phys ; 49(8): 5513-5522, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35652248

RESUMO

PURPOSE: A diamond detector prototype was recently proposed by Marinelli et al. (Medical Physics 2022, https://doi.org/10.1002/mp.15473) for applications in ultrahigh-dose-per-pulse (UH-DPP) and ultrahigh-dose-rate (UH-DR) beams, as used in FLASH radiotherapy (FLASH-RT). In the present study, such so-called flashDiamond (fD) was investigated from the dosimetric point of view, under pulsed electron beam irradiation. It was then used for the commissioning of an ElectronFlash linac (SIT S.p.A., Italy) both in conventional and UH-DPP modalities. METHODS: Detector calibration was performed in reference conditions, under 60 Co and electron beam irradiation. Its response linearity was investigated in UH-DPP conditions. For this purpose, the DPP was varied in the 1.2-11.9 Gy range, by changing either the beam applicator or the pulse duration from 1 to 4 µs. Dosimetric validation of the fD detector prototype was then performed in conventional modality, by measuring percentage depth dose (PDD) curves, beam profiles, and output factors (OFs). All such measurements were carried out in a motorized water phantom. The obtained results were compared with the ones from commercially available dosimeters, namely, a microDiamond, an Advanced Markus ionization chamber, a silicon diode detector, and EBT-XD GAFchromic films. Finally, the fD detector was used to fully characterize the 7 and 9 MeV UH-DPP electron beams delivered by the ElectronFlash linac. In particular, PDDs, beam profiles, and OFs were measured, for both energies and all the applicators, and compared with the ones from EBT-XD films irradiated in the same experimental conditions. RESULTS: The fD calibration coefficient resulted to be independent from the investigated beam qualities. The detector response was found to be linear in the whole investigated DPP range. A very good agreement was observed among PDDs, beam profiles, and OFs measured by the fD prototype and reference detectors, both in conventional and UH-DPP irradiation modalities. CONCLUSIONS: The fD detector prototype was validated from the dosimetric point of view against several commercial dosimeters in conventional beams. It was proved to be suitable in UH-DPP and UH-DR conditions, for which no other commercial real-time active detector is available to date. It was shown to be a very useful tool to perform fast and reproducible beam characterizations in standard clinical motorized water phantom setups. All of the previously mentioned demonstrate the suitability of the proposed detector for the commissioning of UH-DR linac beams for preclinical FLASH-RT applications.


Assuntos
Diamante , Elétrons , Aceleradores de Partículas , Radiometria/métodos , Água
9.
Med Phys ; 49(7): 4705-4714, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35416306

RESUMO

BACKGROUND: Conventional air ionization chambers (ICs) exhibit ion recombination correction factors that deviate substantially from unity when irradiated with dose per pulse magnitudes higher than those used in conventional radiotherapy. This fact makes these devices unsuitable for the dosimetric characterization of beams in ultra-high dose per pulse as used for FLASH radiotherapy. PURPOSE: We present the design, development, and characterization of an ultra-thin parallel plate IC that can be used in ultra-high dose rate (UHDR) deliveries with minimal recombination. METHODS: The charge collection efficiency (CCE) of parallel plate ICs was modeled through a numerical solution of the coupled differential equations governing the transport of charged carriers produced by ionizing radiation. It was used to find out the optimal parameters for the purpose of designing an IC capable of exhibiting a linear response with dose (deviation less than 1%) up to 10 Gy per pulse at 4 µ $\umu$ s pulse duration. As a proof of concept, two vented parallel plate IC prototypes have been built and tested in different ultra-high pulse dose rate electron beams. RESULTS: It has been found that by reducing the distance between electrodes to a value of 0.25 mm it is possible to extend the dose rate operating range of parallel plate ICs to ultra-high dose per pulse range, at standard voltage of clinical grade electrometers, well into several Gy per pulse. The two IC prototypes exhibit behavior as predicted by the numerical simulation. One of the so-called ultra-thin parallel plate ionization chamber (UTIC) prototypes was able to measure up to 10 Gy per pulse, 4 µ $\umu$ s pulse duration, operated at 300 V with no significant deviation from linearity within the uncertainties (ElectronFlash Linac, SIT). The other prototype was tested up to 5.4 Gy per pulse, 2.5 µ $\umu$ s pulse duration, operated at 250 V with CCE higher than 98.6% (Metrological Electron Accelerator Facility, MELAF at Physikalisch-Technische Bundesanstalt, PTB). CONCLUSIONS: This work demonstrates the ability to extend the dose rate operating range of ICs to ultra-high dose per pulse range by reducing the spacing between electrodes. The results show that UTICs are suitable for measurement in UHDR electron beams.


Assuntos
Aceleradores de Partículas , Radiometria , Elétrons , Radiação Ionizante , Dosagem Radioterapêutica
10.
Phys Med Biol ; 67(8)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35290962

RESUMO

Purpose. This investigation aims to present the characterisation and optimisation of an ultra-high pulse dose rate (UHPDR) electron beam at the PTB facility in Germany. A Monte Carlo beam model has been developed for dosimetry study for future investigation in FLASH radiotherapy and will be presented.Material and methods. The 20 MeV electron beams generated by the research linear accelerator has been characterised both in-beamline with profile monitors and magnet spectrometer, and in-water with a diamond detector prototype. The Monte Carlo model has been used to investigate six different setups to enable different dose per pulse (DPP) ranges and beam sizes in water. The properties of the electron radiation field in water have also been characterised in terms of beam size, quality specifierR50and flatness. The beam stability has also been studied.Results. The difference between the Monte-Carlo simulated and measuredR50was smaller than 0.5 mm. The simulated beam sizes agreed with the measured ones within 2 mm. Two suitable setups have been identified for delivering reference UHPDR electron beams. The first one is characterised by a SSD of 70 cm, while in the second one an SSD of 90 cm is used in combination with a 2 mm aluminium scattering plates. The two set-ups are quick and simple to install and enable an expected overall DPP range from 0.13 Gy up to 6.7 Gy per pulse.Conclusion. The electron beams generated by the PTB research accelerator have shown to be stable throughout the four-months length of this investigation. The Monte Carlo models have shown to be in good agreement for beam size and depth dose and within 1% for the beam flatness. The diamond detector prototype has shown to be a promising tool to be used for relative measurements in UHPDR electron beams.


Assuntos
Elétrons , Aceleradores de Partículas , Diamante , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Água
11.
Med Phys ; 48(8): 4572-4585, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34032298

RESUMO

PURPOSE: The magnetic-field correction factors k B , Q of compact air-filled ionization chambers have been investigated experimentally and using Monte Carlo simulations up to 1.5 T. The role of the nonsensitive region within the air cavity and influence of the chamber construction on its dose response have been elucidated. MATERIALS AND METHODS: The PTW Semiflex 3D 31021, PinPoint 3D 31022, and Sun Nuclear Cooperation SNC125c chambers were studied. The k B , Q factors were measured at the experimental facility of the German National Metrology Institute (PTB) up to 1.4 T using a 6 MV photon beam. The chambers were positioned with the chamber axis perpendicular to the beam axis (radial); and parallel to the beam axis (axial). In both cases, the magnetic field was directed perpendicular to both the beam axis and chamber axis. Additionally, the sensitive volumes of these chambers have been experimentally determined using a focused proton microbeam and finite element method. Beside the simulations of k B , Q factors, detailed Monte Carlo technique has been applied to analyse the secondary electron fluence within the air cavity, that is, the number of secondary electrons and the average path length as a function of the magnetic field strength. RESULTS: A nonsensitive volume within the air cavity adjacent to the chamber stem for the PTW chambers has been identified from the microbeam measurements and FEM calculations. The dose response of the three investigated ionization chambers does not deviate by more than 4% from the field-free case within the range of magnetic fields studied in this work for both the radial and axial orientations. The simulated k B , Q for the fully guarded PTW chambers deviate by up to 6% if their sensitive volumes are not correctly considered during the simulations. After the implementation of the sensitive volume derived from the microbeam measurements, an agreement of better than 1% between the experimental and Monte Carlo k B , Q factors for all three chambers can be achieved. Detailed analysis reveals that the stem of the PTW chambers could give rise to a shielding effect reducing the number of secondary electrons entering the air cavity in the presence of magnetic field. However, the magnetic field dependence of their path length within the air cavity is shown to be weaker than for the SNC125c chamber, where the length of the air cavity is larger than its diameter. For this chamber it is shown that the number of electrons and their path lengths in the cavity depend stronger on the magnetic field. DISCUSSION AND CONCLUSION: For clinical measurements up to 1.5 T, the required k B , Q corrections of the three chambers could be kept within 3% in both the investigated chamber orientations. The results reiterate the importance of considering the sensitive volume of fully guarded chambers, even for the investigated compact chambers, in the Monte Carlo simulations of chamber response in magnetic field. The resulting magnetic field-dependent dose response has been demonstrated to depend on the chamber construction, such as the ratio between length and the diameter of the air cavity as well as the design of the chamber stem.


Assuntos
Campos Magnéticos , Radiometria , Elétrons , Humanos , Método de Monte Carlo , Fótons , Prótons
12.
Med Phys ; 48(2): 819-830, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33251606

RESUMO

PURPOSE: The ion collection efficiency of vented ionization chambers has been investigated in an ultra-high dose-per-pulse (DPP) electron beam. The role of the chamber design and the electric field strength in the sensitive air volume have been evaluated. METHODS: An advanced Markus chamber and three specially designed parallel plate air-filled ionization chambers (EWC: End Window Chamber) with varying electrode distance of 0.5, 1, and 2 mm have been investigated. Their ion collection efficiencies were determined experimentally using two methods: extrapolation of Jaffé plots and comparison against a DPP-independent reference detector. The latter was achieved by calibrating a current transformer against alanine dosimeters. All measurements were performed in a 24 MeV electron beam with DPP values between 0.01 and 3 Gy. Additionally, the numerical approach introduced by Gotz et al. was implemented taking into account space charge effects at these ultra-high DPPs. The method has been extended to obtain time-resolved and position-dependent electric field distortions within the air cavity. RESULTS: The ion collection efficiency of the investigated ionization chambers drops significantly in the ultra-high DPP range. The extent of this drop is dependent on the electrode distance, the applied chamber voltage and thus the field strength in the sensitive air volume. For the Advanced Markus chamber, a good agreement between the experimental, numerical and the results of Petersson et al. could be shown. Using the three EWCs with different electrode spacing, an improvement of the ion collection efficiency and a reduction of the polarity effect with decreasing electrode distance could be demonstrated. Furthermore, the results revealed that the determination of the ion collection efficiency from the Jaffé plots and therefore also from two-voltage method typically underestimate the ion collection efficiency in the region of high dose-per-pulse (3 to 130 mGy) and overestimate the ion collection efficiency at ultra-high dose-per-pulse (>1 Gy per pulse). CONCLUSIONS: In this work, the ion collection efficiency determined with different methods and ionization chambers have been compared and discussed. As expected, an increase of the electric field in the ionization chamber, either by applying a higher bias voltage or a reduction of the electrode distance, improves the ion collection efficiency and also reduces the polarity effect. For the Advanced Markus chamber, the experimental results obtained by comparison against a reference agree well with the numerical solution. Based on these results, it seems possible to keep the recombination loss less than or equal to 5% up to a dose-per-pulse of 3 Gy with an appropriately designed ionization chamber, which corresponds to the level accepted in conventional radiotherapy dosimetry protocols.


Assuntos
Elétrons , Radiometria , Planejamento da Radioterapia Assistida por Computador
13.
Phys Med ; 80: 134-150, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33181444

RESUMO

UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates is a recently started European Joint Research Project with the aim to develop and improve dosimetry standards for FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and laser-driven medical accelerators. This paper gives a short overview about the current state of developments of radiotherapy with FLASH electrons and protons, very high energy electrons as well as laser-driven particles and the related challenges in dosimetry due to the ultra-high dose rate during the short radiation pulses. We summarize the objectives and plans of the UHDpulse project and present the 16 participating partners.


Assuntos
Elétrons , Radiometria , Lasers , Aceleradores de Partículas , Prótons , Radioterapia , Dosagem Radioterapêutica , Radioterapia de Alta Energia
14.
Med Phys ; 47(7): 3165-3173, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32196683

RESUMO

PURPOSE: The aim of this study is the experimental and Monte Carlo-based determination of small field correction factors for the unshielded silicon detector microSilicon for a standard linear accelerator as well as the Cyberknife System. In addition, a detailed Monte Carlo analysis has been performed by modifying the detector models stepwise to study the influences of the detector's components. METHODS: Small field output correction factors have been determined for the new unshielded silicon diode detector, microSilicon (type 60023, PTW Freiburg, Germany) as well as for the predecessors Diode E (type 60017, PTW Freiburg, Germany) and Diode SRS (type 60018, PTW Freiburg, Germany) for a Varian TrueBeam linear accelerator at 6 MV and a Cyberknife system. For the experimental determination, an Exradin W1 scintillation detector (Standard Imaging, Middleton, USA) has been used as reference. The Monte Carlo simulations have been performed with EGSnrc and phase space files from IAEA as well as detector models according to manufacturer blueprints. To investigate the influence of the detector's components, the detector models have been modified stepwise. RESULTS: The correction factors for the smallest field size investigated at the TrueBeam linear accelerator (equivalent dosimetric square field side length Sclin  = 6.3 mm) are 0.983 and 0.939 for the microSilicon and Diode E, respectively. At the Cyberknife system, the correction factors of the microSilicon are 0.967 at the smallest 5-mm collimator compared to 0.928 for the Diode SRS. Monte Carlo simulations show comparable results from the measurements and literature. CONCLUSION: The microSilicon (type 60023) detector requires less correction than its predecessors, Diode E (type 60017) and Diode SRS (type 60018). The detector housing has been demonstrated to cause the largest perturbation, mainly due to the enhanced density of the epoxy encapsulation surrounding the silicon chip. This density has been rendered more water equivalent in case of the microSilicon detector to minimize the associated perturbation. The sensitive volume itself has been shown not to cause observable field size-dependent perturbation except for the volume-averaging effect, where the slightly larger diameter of the sensitive volume of the microSilicon (1.5 mm) is still small at the smallest field size investigated with corrections <2%. The new microSilicon fulfils the 5% correction limit recommended by the TRS 483 for output factor measurements at all conditions investigated in this work.


Assuntos
Fótons , Radiometria , Alemanha , Método de Monte Carlo , Aceleradores de Partículas
15.
Biomed Phys Eng Express ; 7(1)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34037536

RESUMO

The aim of this work is the dosimetric characterization of a plane parallel ionization chamber under defined beam setups at the CERN Linear Electron Accelerator for Research (CLEAR). A laser driven electron beam with energy of 200 MeV at two different field sizes of approximately 3.5 mm FWHM and approximately 7 mm FWHM were used at different pulse structures. Thereby the dose-per-pulse range varied between approximately 0.2 and 12 Gy per pulse. This range represents approximately conventional dose rate range beam conditions up to ultra-high dose rate (UHDR) beam conditions. The experiment was based on a water phantom which was integrated into the horizontal beamline and radiochromic films and an Advanced Markus ionization chamber was positioned in the water phantom. In addition, the experimental setup were modelled in the Monte Carlo simulation environment FLUKA. In a first step the radiochromic film measurements were used to verify the beamline setup. Depth dose distributions and dose profiles measured by radiochromic film were compared with Monte Carlo simulations to verify the experimental conditions. Second, the radiochromic films were used for reference dosimetry to characterize the ionization chamber. In particular, polarity effects and the ion collection efficiency of the ionization chamber were investigated for both field sizes and the complete dose rate range. As a result of the study, significant polarity effects and recombination loss of the ionization chamber were shown and characterized. However, the work shows that the behavior of the ionization chamber at the laser driven beam line at the CLEAR facility is comparable to classical high dose-per-pulse electron beams. This allows the use of ionization chambers on the CLEAR system and thus enables active dose measurement during the experiment. Compared to passive dose measurement with film, this is an important step forward in the experimental equipment of the facility.


Assuntos
Elétrons , Radiometria , Método de Monte Carlo , Aceleradores de Partículas , Água
16.
Med Phys ; 46(9): 4241-4245, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31292964

RESUMO

PURPOSE: The purpose of this work is the three-dimensional characterization of the active volumes of commercial solid-state dosimetry detectors. Detailed knowledge of the dimensions of the detector's active volume as well as the detector housing is of particular interest for small-field photon dosimetry. As shown in previous publications from different groups, the design of the detector housing influences the detector signal for small photon fields. Therefore, detailed knowledge of the active volume dimension and the surrounding materials form the basis for accurate Monte Carlo simulations of the detector. METHODS: A 10 MeV proton beam focused by the microbeam system of the Physikalisch-Technische Bundesanstalt was used to measure two-dimensional response maps of a synthetic diamond detector (microDiamond, type 60019, PTW Freiburg) and two silicon detectors (microSilicon, type 60023, PTW Freiburg and Diode E, type 60017, PTW Freiburg). In addition, the thickness of the active volume of the new microSilicon was measured using the method developed in a previous study. RESULTS: The analysis of the response maps leads to active area of 1.18 mm2 for the Diode E, 1.75 mm2 for the microSilicon, and 3.91 mm2 for the microDiamond detector. The thickness of the active volume of the microSilicon detector was determined to be (17.8 ± 2) µm. CONCLUSIONS: This study provides detailed geometrical data of the dosimetric active volume of three different solid-state detector types.


Assuntos
Diamante , Prótons , Radiometria/instrumentação , Silício , Método de Monte Carlo
17.
Med Phys ; 46(9): 4257-4262, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31309594

RESUMO

PURPOSE: Dosimetric properties of the new microSilicon diode detector (60023) have been studied with focus on application in small-field dosimetry. The influences of the dimensions of the sensitive volume and the density of the epoxy layer surrounding the silicon chip of microSilicon have been quantified and compared to its predecessor (Diode E 60017) and the microDiamond (60019, all PTW-Freiburg, Germany). METHODS: Dose linearity has been studied in the range from 0.01 to 8.55 Gy and dose-per-pulse dependence from 0.13 to 0.86 mGy/pulse. The effective point of measurement (EPOM) was determined by comparing measured percentage depth dose curves with a reference curve (Roos chamber). Output ratios were measured for nominal field sizes from 0.5 × 0.5  cm2 to 4 × 4 cm2 . The corresponding small-field output correction factors, k, were derived with a plastic scintillation detector as reference. The lateral dose-response function, K(x), was determined using a slit beam geometry. RESULTS: MicroSilicon shows linear dose response (R2  = 1.000) in both low and high dose range up to 8.55 Gy with deviations of only up to 1% within the dose-per-pulse values investigated. The EPOM was found to lie (0.7 ± 0.2) mm below the front detector's surface. The derived k for microSilicon (0.960 at seff  = 0.55 cm) is similar to that of microDiamond (0.956), while Diode E requires larger corrections (0.929). This improved behavior of microSilicon in small-fields is reflected in the slightly wider K(x) compared to Diode E. Furthermore, the amplitude of the negative values in K(x) at the borders of the sensitive volume has been reduced. CONCLUSIONS: Compared to its predecessor, microSilicon shows improved dosimetric behavior with higher sensitivity and smaller dose-per-pulse dependence. Profile measurements demonstrated that microSilicon causes less perturbation in off-axis measurements. It is especially suitable for the applications in small-field output factors and profile measurements.


Assuntos
Equipamentos e Provisões Elétricas , Radiometria/instrumentação , Silício , Modelos Lineares
18.
Med Phys ; 46(6): 2752-2759, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972756

RESUMO

PURPOSE: Discrepancy between experimental and Monte Carlo simulated dose-response of the microDiamond (mD) detector (type 60019, PTW Freiburg, Germany) at small field sizes has been reported. In this work, the radiation-induced charge imbalance in the structural components of the detector has been investigated as the possible cause of this discrepancy. MATERIALS AND METHODS: Output ratio (OR) measurements have been performed using standard and modified versions of the mD detector at nominal field sizes from 6 mm × 6 mm to 40 mm × 40 mm. In the first modified mD detector (mD_reversed), the type of charge carriers collected is reversed by connecting the opposite contact to the electrometer. In the second modified mD detector (mD_shortened), the detector's contacts have been shortened. The third modified mD detector (mD_noChip) is the same as the standard version but the diamond chip with the sensitive volume has been removed. Output correction factors were calculated from the measured OR and simulated using the EGSnrc package. An adapted Monte Carlo user-code has been used to study the underlying mechanisms of the field size-dependent charge imbalance and to identify the detector's structural components contributing to this effect. RESULTS: At the smallest field size investigated, the OR measured using the standard mD detector is >3% higher than the OR obtained using the modified mD detector with reversed contact (mD_reversed). Combining the results obtained with the different versions of the detector, the OR have been corrected for the effect of radiation imbalance. The OR obtained using the modified mD detector with shortened contacts (mD_shortened) agree with the corrected OR, all showing an over-response of less than 2% at the field sizes investigated. The discrepancy between the experimental and simulated output correction factors has been eliminated after accounting for the effect of charge imbalance. DISCUSSIONS AND CONCLUSIONS: The role of radiation-induced charge imbalance on the dose-response of mD detector in small field dosimetry has been studied and quantified. It has been demonstrated that the effect is significant at small field sizes. Multiple methods were used to quantify the effect of charge imbalance with good agreement between Monte Carlo simulations and experimental results obtained with modified detectors. When this correction is applied to the Monte Carlo data, the discrepancy from experimental data is eliminated. Based on the detailed component analysis using an adapted Monte Carlo user-code, it has been demonstrated that the effect of charge imbalance can be minimized by modifying the design of the detector's contacts.


Assuntos
Diamante , Radiometria/instrumentação , Método de Monte Carlo
19.
Z Med Phys ; 29(4): 303-313, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30878324

RESUMO

INTRODUCTION: The aim of the present work is to perform dosimetric characterization of a novel vented PinPoint ionization chamber (PTW 31023, PTW-Freiburg, Germany). This chamber replaces the previous model (PTW 31014), where the diameter of the central electrode has been increased from 0.3 to 0.6mm and the guard ring has been redesigned. Correction factors for reference and non-reference measurement conditions were examined. MATERIALS AND METHODS: Measurements and calculations of the correction factors were performed according to the DIN 6800-2. The shifts of the effective point of measurement (EPOM) from the chamber's reference point were determined by comparison of the measured PDD with the reference curve obtained with a Roos chamber. Its lateral dose response functions, which act according to a mathematical convolution model as the convolution kernel transforming the dose profile D(x) to the measured signal M(x), have been approximated by Gaussian functions with standard deviation σ. Additionally, the saturation correction factors kS have been determined using different dose-per-pulse (DPP) values. The polarity effect correction factors kP were measured for field sizes from 5cm×5cm to 40cm×40cm. The influence of the diameter of the central electrode and the new guard ring on the beam quality correction factors kQ was studied by Monte-Carlo simulations. The non-reference condition correction factors kNR have been computed for 6MV photo beam by varying the field size and measurement depth. Comparisons on these aspects have been made to the previous model. RESULTS: The shifts of the EPOM from the reference point, Δz, are found to be -0.55 (6MV) and -0.56 (10MV) in the radial orientation and -0.97mm (6MV) and -0.91mm (10MV) in the axial orientation. All values of Δz have an uncertainty of 0.1mm. The σ values are 0.80mm (axial), 0.75mm (radial lateral) and 1.76mm (radial longitudinal) for 6MV photon beam and are 0.85mm (axial), 0.75mm (radial lateral) and 1.82mm (radial longitudinal) for 15MV photon beam. All σ values have an uncertainty of 0.05mm. The correction factor kS was found to be 1.0034±0.0009 for the PTW 31014 chamber and 1.0024±0.0007 for the PTW 31023 chamber at the highest DPP (0.827mGy) investigated in this study. Under reference conditions, the polarity effect correction factor kP of the PTW 31014 chamber is 1.0094 and 1.0116 for 6 and 10MV respectively, while the kP of the PTW 31023 chamber is 1.0005 and 1.0013 for 6 and 10MV respectively, all values have an uncertainty of 0.002. The kP of the new chamber also exhibits a weaker field size dependence. The kQ values of the PTW 31023 chamber are closer to unity than those of the PTW 31014 chamber due to the thicker central electrode and the new guard ring design. The kNR values of the PTW 31023 chamber for 6MV photon beam deviate by not more than 1% from unity for the conditions investigated. DISCUSSIONS: Correction factors associated with the new chamber required to perform reference and relative dose measurements have been determined according to the DIN-protocol. The correction factor kS of the new chamber is 0.1% smaller than that of the PTW 31014 at the highest DPP investigated. Under reference conditions, the correction factor kP of the PTW 31023 chamber is approximately 1% smaller than that of the PTW 31014 chamber for both energies used. The dosimetric characteristics of the new chamber investigated in this work have been demonstrated to fulfil the requirements of the TG-51 addendum for reference-class dosimeters at reference conditions.


Assuntos
Fótons , Radiometria/instrumentação , Radiometria/métodos , Método de Monte Carlo
20.
Z Med Phys ; 29(4): 368-371, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30528414

RESUMO

This addendum provides correction factors for the recombination and the polarity effect for the new ionization chamber PTW PinPoint (type 31023). The measurements were made in filtered (WFF) and unfiltered (FFF) high-energy photon beams. It could be confirmed that both the initial and the general recombination effect of the chamber mainly depends on dose per pulse at the point of measurement and is independent of the filtration of the photon beam.


Assuntos
Terapia com Prótons/métodos , Radiometria , Humanos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...