Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Circ Res ; 134(10): 1259-1275, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597112

RESUMO

BACKGROUND: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo. METHODS: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo. RESULTS: Mesenteric arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed ex vivo significantly reduced angiotensin II (Ang II)-dependent calcium mobilization and contraction, whereas responses to other relaxant or contractile factors were normal. In vitro, the knockdown of GPRC5C in human aortic SMC resulted in diminished Ang II-dependent inositol phosphate production and lower myosin light chain phosphorylation. In line with this, tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed reduced Ang II-induced arterial hypertension, and acute inactivation of GPRC5C was able to ameliorate established arterial hypertension. Mechanistically, we show that GPRC5C and the Ang II receptor AT1 dimerize, and knockdown of GPRC5C resulted in reduced binding of Ang II to AT1 receptors in HEK293 cells, human and murine SMC, and arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice. CONCLUSIONS: Our data show that GPRC5C regulates Ang II-dependent vascular contraction by facilitating AT1 receptor-ligand binding and signaling.


Assuntos
Angiotensina II , Camundongos Knockout , Músculo Liso Vascular , Receptores Acoplados a Proteínas G , Animais , Angiotensina II/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Humanos , Músculo Liso Vascular/metabolismo , Camundongos , Células Cultivadas , Vasoconstrição , Miócitos de Músculo Liso/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Artérias Mesentéricas/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/induzido quimicamente , Hipertensão/genética , Contração Muscular
2.
Pharmacol Res Perspect ; 10(5): e01013, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36177761

RESUMO

The incretin hormones: glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important regulators of many aspects of metabolism including insulin secretion. Their receptors (GIPR and GLP-1R) are closely related members of the secretin class of G-protein-coupled receptors. As both receptors are expressed on pancreatic ß-cells there is at least the hypothetical possibility that they may form heteromers. In the present study, we investigated GIPR/GLP-1R heteromerization and the impact of GIPR on GLP-1R-mediated signaling and vice versa in HEK-293 cells. Real-time fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) saturation experiments confirm that GLP-1R and GIPR form heteromers. Stimulation with 1 µM GLP-1 caused an increase in both FRET and BRET ratio, whereas stimulation with 1 µM GIP caused a decrease. The only other ligand tested to cause a significant change in BRET signal was the GLP-1 metabolite, GLP-1 (9-36). GIPR expression had no significant effect on mini-Gs recruitment to GLP-1R but significantly inhibited GLP-1 stimulated mini-Gq and arrestin recruitment. In contrast, the presence of GLP-1R improved GIP stimulated mini-Gs and mini-Gq recruitment to GIPR. These data support the hypothesis that GIPR and GLP-1R form heteromers with differential consequences on cell signaling.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptores dos Hormônios Gastrointestinais , Arrestinas/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/farmacologia , Células HEK293 , Humanos , Incretinas , Ligantes , Peptídeos , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo , Transdução de Sinais
3.
Nat Commun ; 13(1): 5638, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163356

RESUMO

ß-arrestins mediate regulatory processes for over 800 different G protein-coupled receptors (GPCRs) by adopting specific conformations that result from the geometry of the GPCR-ß-arrestin complex. However, whether ß-arrestin1 and 2 respond differently for binding to the same GPCR is still unknown. Employing GRK knockout cells and ß-arrestins lacking the finger-loop-region, we show that the two isoforms prefer to associate with the active parathyroid hormone 1 receptor (PTH1R) in different complex configurations ("hanging" and "core"). Furthermore, the utilisation of advanced NanoLuc/FlAsH-based biosensors reveals distinct conformational signatures of ß-arrestin1 and 2 when bound to active PTH1R (P-R*). Moreover, we assess ß-arrestin conformational changes that are induced specifically by proximal and distal C-terminal phosphorylation and in the absence of GPCR kinases (GRKs) (R*). Here, we show differences between conformational changes that are induced by P-R* or R* receptor states and further disclose the impact of site-specific GPCR phosphorylation on arrestin-coupling and function.


Assuntos
Arrestinas , Transdução de Sinais , Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Luciferases , Hormônio Paratireóideo/metabolismo , Fosforilação/fisiologia , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
4.
Br J Pharmacol ; 179(16): 4107-4116, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35352338

RESUMO

BACKGROUND AND PURPOSE: The interaction of arrestins with G-protein coupled receptors (GPCRs) desensitizes agonist-dependent receptor responses and often leads to receptor internalization. GPCRs that internalize without arrestin have been classified as "class A" GPCRs whereas "class B" GPCRs co-internalize with arrestin into endosomes. The interaction of arrestins with GPCRs requires both agonist activation and receptor phosphorylation. Here, we ask the question whether agonists with very slow off-rates can cause the formation of particularly stable receptor-arrestin complexes. EXPERIMENTAL APPROACH: The stability of GPCR-arrestin-3 complexes at two class A GPCRs, the ß2 -adrenoceptor and the µ opioid receptor, was assessed using two different techniques, fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) employing several ligands with very different off-rates. Arrestin trafficking was determined by confocal microscopy. KEY RESULTS: Upon agonist washout, GPCR-arrestin-3 complexes showed markedly different dissociation rates in single-cell FRET experiments. In FRAP experiments, however, all full agonists led to the formation of receptor-arrestin complexes of identical stability whereas the complex between the µ receptor and arrestin-3 induced by the partial agonist morphine was less stable. Agonists with very slow off-rates could not mediate the co-internalization of arrestin-3 with class A GPCRs into endosomes. CONCLUSIONS AND IMPLICATIONS: Agonist off-rates do not affect the stability of GPCR-arrestin complexes but phosphorylation patterns do. Our results imply that orthosteric agonists are not able to pharmacologically convert class A into class B GPCRs.


Assuntos
Arrestina , Internato e Residência , Arrestinas , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 2 , beta-Arrestinas
5.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851820

RESUMO

G protein-coupled receptors (GPCRs) transmit extracellular signals to the inside by activation of intracellular effector proteins. Different agonists can promote differential receptor-induced signaling responses - termed bias - potentially by eliciting different levels of recruitment of effector proteins. As activation and recruitment of effector proteins might influence each other, thorough analysis of bias is difficult. Here, we compared the efficacy of seven agonists to induce G protein, G protein-coupled receptor kinase 2 (GRK2), as well as arrestin3 binding to the muscarinic acetylcholine receptor M3 by utilizing FRET-based assays. In order to avoid interference between these interactions, we studied GRK2 binding in the presence of inhibitors of Gi and Gq proteins and analyzed arrestin3 binding to prestimulated M3 receptors to avoid differences in receptor phosphorylation influencing arrestin recruitment. We measured substantial differences in the agonist efficacies to induce M3R-arrestin3 versus M3R-GRK2 interaction. However, the rank order of the agonists for G protein- and GRK2-M3R interaction was the same, suggesting that G protein and GRK2 binding to M3R requires similar receptor conformations, whereas requirements for arrestin3 binding to M3R are distinct.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Muscarínicos/fisiologia , beta-Arrestina 2/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos
6.
Front Pharmacol ; 11: 1271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903502

RESUMO

The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptor are important targets in the treatment of both type 2 diabetes mellitus (T2DM) and obesity. Originally identified for their role in desensitization, internalization and recycling of G protein-coupled receptors (GPCRs), arrestins have since been shown to act as scaffolding proteins that allow GPCRs to signal in a G protein-independent manner. While GLP-1R has been reported to interact with arrestins, this aspect of cell signaling remains controversial for GIPR. Using a (FRET)-based assay we have previously shown that yellow fluorescent protein (YFP)-labeled GIPR does not recruit arrestin. This GIPR-YFP construct contained a 10 amino acid linker between the receptor and a XbaI restriction site upstream of the YFP. This linker was not present in the modified GIPR-SYFP2 used in subsequent FRET and bioluminescence resonance energy transfer (BRET) assays. However, its removal results in the introduction of a serine residue adjacent to the end of GIPR's C-terminal tail which could potentially be a phosphorylation site. The resulting receptor was indeed able to recruit arrestin. To find out whether the serine/arginine (SR) coded by the XbaI site was indeed the source of the problem, it was substituted with glycine/glycine (GG) by site-directed mutagenesis. This substitution abolished arrestin recruitment in the BRET assay but only significantly reduced it in the FRET assay. In addition, we show that the presence of a N-terminal FLAG epitope and influenza hemagglutinin signal peptide were also required to detect arrestin recruitment to the GIPR, most likely by increasing receptor cell surface expression. These results demonstrate how arrestin recruitment assay configuration can dramatically alter the result. This becomes relevant when drug discovery programs aim to identify ligands with "biased agonist" properties.

8.
Sci Signal ; 13(625)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234959

RESUMO

Biased agonism at G protein-coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of G proteins versus ß-arrestins are commonly limited by the small response windows obtained in pathways that are not amplified or are less effectively coupled to receptor engagement, such as ß-arrestin recruitment. At the µ-opioid receptor (MOR), G protein-biased ligands have been proposed to induce less constipation and respiratory depressant side effects than opioids commonly used to treat pain. However, it is unclear whether these improved safety profiles are due to a reduction in ß-arrestin-mediated signaling or, alternatively, to their low intrinsic efficacy in all signaling pathways. Here, we systematically evaluated the most recent and promising MOR-biased ligands and assessed their pharmacological profile against existing opioid analgesics in assays not confounded by limited signal windows. We found that oliceridine, PZM21, and SR-17018 had low intrinsic efficacy. We also demonstrated a strong correlation between measures of efficacy for receptor activation, G protein coupling, and ß-arrestin recruitment for all tested ligands. By measuring the antinociceptive and respiratory depressant effects of these ligands, we showed that the low intrinsic efficacy of opioid ligands can explain an improved side effect profile. Our results suggest a possible alternative mechanism underlying the improved therapeutic windows described for new opioid ligands, which should be taken into account for future descriptions of ligand action at this important therapeutic target.


Assuntos
Benzimidazóis , Piperidinas , Receptores Opioides mu/agonistas , Compostos de Espiro , Tiofenos , Ureia/análogos & derivados , Benzimidazóis/efeitos adversos , Benzimidazóis/química , Benzimidazóis/farmacologia , Células HEK293 , Humanos , Piperidinas/efeitos adversos , Piperidinas/química , Piperidinas/farmacologia , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Compostos de Espiro/efeitos adversos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Tiofenos/efeitos adversos , Tiofenos/química , Tiofenos/farmacologia , Ureia/efeitos adversos , Ureia/química , Ureia/farmacologia , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
9.
Biochem Biophys Res Commun ; 520(2): 327-332, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31604529

RESUMO

The Raf kinase inhibitor protein (RKIP) activates ß-adrenoceptors (ß-AR) and thereby induces a well-tolerated cardiac contractility and prevents heart failure in mice. Different to RKIP-mediated ß-AR activation, chronic activation of ß-AR by catecholamines was shown to be detrimental for the heart. RKIP is an endogenous inhibitor of G protein coupled receptor kinase 2 (GRK2); it binds GRK2 and thereby inhibits GRK2 mediated ß-AR phosphorylation and desensitization. Here, we evaluate RKIP-mediated effects on ß-AR to explore new strategies for ß-AR modulation. Co-immunoprecipitation assays and pull-down assays revealed subtype specificity of RKIP for the cardiac GRK isoforms GRK2 and GRK3 - not GRK5 - as well as several RKIP binding sites within their N-termini (GRK21-185 and GRK31-185). Overexpression of these N-termini prevented ß2-AR phosphorylation and internalization, subsequently increased receptor signaling in HEK293 cells and cardiomyocyte contractility. Co-immunoprecipitation assays of ß2-AR with these N-terminal GRK fragments revealed a direct interaction suggesting a steric interference of the fragments with the functional GRK-receptor interaction. Altogether, N-termini of GRK2 and GRK3 efficiently simulate RKIP effects on ß-AR signaling in HEK293 cells and in cardiomyocytes by their binding to ß2-AR and, thus, provide important insights for the development of new strategies to modulate ß2-AR signaling.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 3 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos , Miócitos Cardíacos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosforilação , Receptores Adrenérgicos beta 2/genética
10.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330984

RESUMO

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important regulators of metabolism, making their receptors (GLP-1R and GIPR) attractive targets in the treatment of type 2 diabetes mellitus (T2DM). GLP-1R agonists are used clinically to treat T2DM but the use of GIPR agonists remains controversial. Recent studies suggest that simultaneous activation of GLP-1R and GIPR with a single peptide provides superior glycemic control with fewer adverse effects than activation of GLP-1R alone. We investigated the signaling properties of a recently reported dual-incretin receptor agonist (P18). GLP-1R, GIPR, and the closely related glucagon receptor (GCGR) were expressed in HEK-293 cells. Activation of adenylate cyclase via Gαs was monitored using a luciferase-linked reporter gene (CRE-Luc) assay. Arrestin recruitment was monitored using a bioluminescence resonance energy transfer (BRET) assay. GLP-1, GIP, and glucagon displayed exquisite selectivity for their receptors in the CRE-Luc assay. P18 activated GLP-1R with similar potency to GLP-1 and GIPR with higher potency than GIP. Interestingly, P18 was less effective than GLP-1 at recruiting arrestin to GLP-1R and was inactive at GCGR. These data suggest that P18 can act as both a dual-incretin receptor agonist, and as a G protein-biased agonist at GLP-1R.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucagon/metabolismo , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/metabolismo , Sequência de Aminoácidos , Arrestina/metabolismo , Arrestina/farmacologia , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Peptídeos/química , Peptídeos/farmacologia , Receptores de Glucagon/antagonistas & inibidores
11.
Sci Signal ; 11(539)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018083

RESUMO

G protein receptor kinases (GRKs) and ß-arrestins are key regulators of µ-opioid receptor (MOR) signaling and trafficking. We have previously shown that high-efficacy opioids such as DAMGO stimulate a GRK2/3-mediated multisite phosphorylation of conserved C-terminal tail serine and threonine residues, which facilitates internalization of the receptor. In contrast, morphine-induced phosphorylation of MOR is limited to Ser375 and is not sufficient to drive substantial receptor internalization. We report how specific multisite phosphorylation controlled the dynamics of GRK and ß-arrestin interactions with MOR and show how such phosphorylation mediated receptor desensitization. We showed that GRK2/3 was recruited more quickly than was ß-arrestin to a DAMGO-activated MOR. ß-Arrestin recruitment required GRK2 activity and MOR phosphorylation, but GRK recruitment also depended on the phosphorylation sites in the C-terminal tail, specifically four serine and threonine residues within the 370TREHPSTANT379 motif. Our results also suggested that other residues outside this motif participated in the initial and transient recruitment of GRK and ß-arrestins. We identified two components of high-efficacy agonist desensitization of MOR: a sustained component, which required GRK2-mediated phosphorylation and a potential soluble factor, and a rapid component, which was likely mediated by GRK2 but independent of receptor phosphorylation. Elucidating these complex receptor-effector interactions represents an important step toward a mechanistic understanding of MOR desensitization that leads to the development of tolerance and dependence.


Assuntos
Arrestinas/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Regulação da Expressão Gênica , Receptores Opioides mu/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Analgésicos Opioides/farmacologia , Arrestinas/química , Quinase 2 de Receptor Acoplado a Proteína G/química , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação , Fosforilação/efeitos dos fármacos , Receptores Opioides mu/agonistas , Homologia de Sequência , Serina/genética , Serina/metabolismo , Transdução de Sinais , Treonina/genética , Treonina/metabolismo
12.
Cell Death Differ ; 24(5): 761-773, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28282037

RESUMO

Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca2+]m uptake upon SK channel activation as detected by time lapse mitochondrial Ca2+ measurements with the Ca2+-binding mitochondria-targeted aequorin and FRET-based [Ca2+]m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca2+]m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.


Assuntos
Cálcio/metabolismo , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Equorina/genética , Equorina/metabolismo , Animais , Apamina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Indóis/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Oximas/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
13.
J Cell Biol ; 216(1): 199-215, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007914

RESUMO

Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor ßPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration.


Assuntos
Movimento Celular , Células Dendríticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Genótipo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Espectrometria de Massas , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Interferência de RNA , Receptores de Superfície Celular/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Semaforinas/deficiência , Semaforinas/genética , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
14.
Biochem J ; 473(22): 4173-4192, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27623777

RESUMO

The parathyroid hormone receptor 1 (PTH1R) is a member of family B of G-protein-coupled receptors (GPCRs), predominantly expressed in bone and kidney where it modulates extracellular Ca2+ homeostasis and bone turnover. It is well established that phosphorylation of GPCRs constitutes a key event in regulating receptor function by promoting arrestin recruitment and coupling to G-protein-independent signaling pathways. Mapping phosphorylation sites on PTH1R would provide insights into how phosphorylation at specific sites regulates cell signaling responses and also open the possibility of developing therapeutic agents that could target specific receptor functions. Here, we have used mass spectrometry to identify nine sites of phosphorylation in the C-terminal tail of PTH1R. Mutational analysis revealed identified two clusters of serine and threonine residues (Ser489-Ser495 and Ser501-Thr506) specifically responsible for the majority of PTH(1-34)-induced receptor phosphorylation. Mutation of these residues to alanine did not affect negatively on the ability of the receptor to couple to G-proteins or activate extracellular-signal-regulated kinase 1/2. Using fluorescence resonance energy transfer and bioluminescence resonance energy transfer to monitor PTH(1-34)-induced interaction of PTH1R with arrestin3, we show that the first cluster Ser489-Ser495 and the second cluster Ser501-Thr506 operated in concert to mediate both the efficacy and potency of ligand-induced arrestin3 recruitment. We further demonstrate that Ser503 and Thr504 in the second cluster are responsible for 70% of arrestin3 recruitment and are key determinants for interaction of arrestin with the receptor. Our data are consistent with the hypothesis that the pattern of C-terminal tail phosphorylation on PTH1R may determine the signaling outcome following receptor activation.


Assuntos
Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Sequência de Aminoácidos , Arrestinas/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Ensaio de Imunoadsorção Enzimática , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Imunoprecipitação , Espectrometria de Massas , Dados de Sequência Molecular , Fosforilação , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptores Acoplados a Proteínas G/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
15.
Mol Pharmacol ; 87(1): 9-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25316767

RESUMO

G-protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase with an important function in the desensitization of G-protein-coupled receptors. Based on its ability to bind G-protein ßγ subunits as well as activated Gαq subunits, it can be considered as an effector for G-proteins. The recruitment of GRK2 to activated receptors is well known to be mediated by Gßγ together with negatively charged membrane phospholipids. In the current study, we address the role of Gαq on the interaction of GRK2 with activated Gq-protein-coupled receptors. Therefore, we established new Förster resonance energy transfer (FRET)-based assays to study the interaction of GRK2 with the M3-acetylcholine (M3-ACh) receptor as well as Gq-protein subunits with high spatiotemporal resolution in single living human embryonic kidney 293T cells. M3-ACh receptor stimulation with 10 µM acetylcholine resulted in distinct changes in FRET, which reflects interaction of the respective proteins. GRK2 mutants with reduced binding affinity toward Gαq [GRK2(D110A)] and Gßγ [GRK2(R587Q)] were used to determine the specific role of Gq-protein-binding by GRK2. Comparison of absolute FRET amplitudes demonstrated that Gαq enhances the extent and stability of the GRK2-M3-ACh receptor interaction, and that not only Gßγ but also Gαq can target GRK2 to the membrane. This reveals an important role of Gαq in efficient recruitment of GRK2 to M3-ACh receptors. Furthermore, interactions between Gαq and GRK2 were associated with a prolongation of the interaction between GRK2 and the M3-ACh receptor and enhanced arrestin recruitment by these receptors, indicating that Gαq influences signaling and desensitization.


Assuntos
Acetilcolina/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptor Muscarínico M3/metabolismo , Arrestina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Quinase 2 de Receptor Acoplado a Proteína G/genética , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Transdução de Sinais
16.
Mol Pharmacol ; 87(2): 349-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25425623

RESUMO

G protein-coupled receptor phosphorylation plays a major role in receptor desensitization and arrestin binding. It is, however, unclear how distinct receptor phosphorylation patterns may influence arrestin binding and subsequent trafficking. Here we engineer phosphorylation sites into the C-terminal tail of the ß2-adrenoceptor (ß2AR) and demonstrate that this mutant, termed ß2AR(SSS), showed increased isoprenaline-stimulated phosphorylation and differences in arrestin-3 affinity and trafficking. By measuring arrestin-3 recruitment and the stability of arrestin-3 receptor complexes in real time using fluorescence resonance energy transfer and fluorescence recovery after photobleaching, we demonstrate that arrestin-3 dissociated quickly and almost completely from the ß2AR, whereas the interaction with ß2AR(SSS) was 2- to 4-fold prolonged. In contrast, arrestin-3 interaction with a ß2-adrenoceptor fused to the carboxyl-terminal tail of the vasopressin type 2 receptor was nearly irreversible. Further analysis of arrestin-3 localization revealed that by engineering phosphorylation sites into the ß2-adrenoceptor the receptor showed prolonged interaction with arrestin-3 and colocalization with arrestin in endosomes after internalization. This is in contrast to the wild-type receptor that interacts transiently with arrestin-3 at the plasma membrane. Furthermore, ß2AR(SSS) internalized more efficiently than the wild-type receptor, whereas recycling was very similar for both receptors. Thus, we show how the interaction between arrestins and receptors can be increased with minimal receptor modification and that relatively modest increases in receptor-arrestin affinity are sufficient to alter arrestin trafficking.


Assuntos
Arrestinas/genética , Arrestinas/metabolismo , Endocitose/fisiologia , Engenharia de Proteínas/métodos , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
17.
PLoS One ; 9(9): e106890, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191754

RESUMO

BACKGROUND AND OBJECTIVES: Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important regulators of insulin secretion, and their functional loss is an early characteristic of type 2 diabetes mellitus (T2DM). Pharmacological levels of GLP-1, but not GIP, can overcome this loss. GLP-1 and GIP exert their insulinotropic effects through their respective receptors expressed on pancreatic ß-cells. Both the GLP-1 receptor (GLP-1R) and the GIP receptor (GIPR) are members of the secretin family of G protein-coupled receptors (GPCRs) and couple positively to adenylate cyclase. We compared the signalling properties of these two receptors to gain further insight into why GLP-1, but not GIP, remains insulinotropic in T2DM patients. METHODS: GLP-1R and GIPR were transiently expressed in HEK-293 cells, and basal and ligand-induced cAMP production were investigated using a cAMP-responsive luciferase reporter gene assay. Arrestin3 (Arr3) recruitment to the two receptors was investigated using enzyme fragment complementation, confocal microscopy and fluorescence resonance energy transfer (FRET). RESULTS: GIPR displayed significantly higher (P<0.05) ligand-independent activity than GLP-1R. Arr3 displayed a robust translocation to agonist-stimulated GLP-1R but not to GIPR. These observations were confirmed in FRET experiments, in which GLP-1 stimulated the recruitment of both GPCR kinase 2 (GRK2) and Arr3 to GLP-1R. These interactions were not reversed upon agonist washout. In contrast, GIP did not stimulate recruitment of either GRK2 or Arr3 to its receptor. Interestingly, arrestin remained at the plasma membrane even after prolonged (30 min) stimulation with GLP-1. Although the GLP-1R/arrestin interaction could not be reversed by agonist washout, GLP-1R and arrestin did not co-internalise, suggesting that GLP-1R is a class A receptor with regard to arrestin binding. CONCLUSIONS: GIPR displays higher basal activity than GLP-1R but does not effectively recruit GRK2 or Arr3.


Assuntos
Arrestinas/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células HEK293 , Humanos , Ligação Proteica , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/genética
18.
Mol Biol Cell ; 25(19): 3070-80, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079691

RESUMO

The dynamic relationship between constitutive and ligand-triggered clathrin-mediated endocytosis is only poorly characterized, and it remains controversial whether clathrin-coated pits specialize to internalize particular receptor cargo. Here we analyzed the ligand-triggered endocytosis of the model G-protein-coupled receptors (GPCRs) ß2-adrenergic receptor (ß2AR) and Mu-opioid receptor (MOR) at the level of individual endocytic events using a total internal reflection fluorescence microscopy (TIRFM)-based assay. Similar to the constitutive endocytosis of transferrin receptor (TfR), ligand- triggered endocytosis of ß2AR occurs via quantized scission events hosted by clathrin spots and plaques of variable size and persistence. To address whether clathrin-coated structures (CCSs) specialize to internalize particular GPCRs, we adapted the TIRFM imaging assay to simultaneously quantify the internalization of TfR and the ligand- triggered endocytosis of the ß2AR or MOR. Agonist-triggered ß2AR or MOR endocytosis extended the maturation time of CCSs, as shown previously, but did not affect the rate of constitutive TfR endocytosis or loading of TfR into individual endocytic vesicles. Both the ß2AR and the MOR receptors entered cells in the same vesicles as TfR, and the overall evidence for CCS specialization was weak. These data support a simple model in which different cargoes internalize through common CCSs.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Endocitose/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores Opioides mu/metabolismo , Receptores da Transferrina/metabolismo , Linhagem Celular , Invaginações Revestidas da Membrana Celular/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência
19.
Mol Pharmacol ; 82(2): 178-88, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22553358

RESUMO

Previously we correlated the efficacy for G protein activation with that for arrestin recruitment for a number of agonists at the µ-opioid receptor (MOPr) stably expressed in HEK293 cells. We suggested that the endomorphins (endomorphin-1 and -2) might be biased toward arrestin recruitment. In the present study, we investigated this phenomenon in more detail for endomorphin-2, using endogenous MOPr in rat brain as well as MOPr stably expressed in HEK293 cells. For MOPr in neurons in brainstem locus ceruleus slices, the peptide agonists [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and endomorphin-2 activated inwardly rectifying K(+) current in a concentration-dependent manner. Analysis of these responses with the operational model of pharmacological agonism confirmed that endomorphin-2 had a much lower operational efficacy for G protein-mediated responses than did DAMGO at native MOPr in mature neurons. However, endomorphin-2 induced faster desensitization of the K(+) current than did DAMGO. In addition, in HEK293 cells stably expressing MOPr, the ability of endomorphin-2 to induce phosphorylation of Ser375 in the COOH terminus of the receptor, to induce association of arrestin with the receptor, and to induce cell surface loss of receptors was much more efficient than would be predicted from its efficacy for G protein-mediated signaling. Together, these results indicate that endomorphin-2 is an arrestin-biased agonist at MOPr and the reason for this is likely to be the ability of endomorphin-2 to induce greater phosphorylation of MOPr than would be expected from its ability to activate MOPr and to induce activation of G proteins.


Assuntos
Analgésicos Opioides/farmacologia , Oligopeptídeos/fisiologia , Receptores Opioides mu/agonistas , Receptores Opioides mu/fisiologia , Analgésicos Opioides/metabolismo , Animais , Relação Dose-Resposta a Droga , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Células HEK293 , Humanos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
20.
PLoS One ; 7(1): e29946, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272263

RESUMO

BACKGROUND AND OBJECTIVE: Muscarinic acetylcholine receptors (mAChRs) are 7-transmembrane, G protein-coupled receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of mAChR agonists, we have developed a fluorescently tagged M(1) mAChR that reports ligand-induced conformational changes in real-time by changes in Förster resonance energy transfer (FRET). METHODS: Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the mouse M(1) mAChR, respectively. The optimized FRET receptor construct (M(1)-cam5) was expressed stably in HEK293 cells. RESULTS: The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact with Gα(q/11) proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent internalization. Addition of the full agonist methacholine caused a reversible decrease in M(1) FRET (F(EYFP)/F(ECFP)) that was prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked by methacholine. CONCLUSION: The M(1) FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a valuable molecular reagent for pharmacological and structural investigations of M(1) mAChR activation.


Assuntos
Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Agonistas Muscarínicos/metabolismo , Receptor Muscarínico M1/metabolismo , Animais , Arecolina/metabolismo , Arecolina/farmacologia , Atropina/metabolismo , Atropina/farmacologia , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Cloreto de Metacolina/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos , Microscopia Confocal , Agonistas Muscarínicos/farmacologia , Piperidinas/metabolismo , Piperidinas/farmacologia , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...