Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 5(6): 2778-2785, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33405610

RESUMO

Oxidative stress caused by free radicals is one of the great threats to inflict intracellular damage. Here, we report a convenient approach to the synthesis, characterization, and evaluation of the radical activity of titanium-based composites. We have investigated the potential of natural antioxidants (curcumin, quercetin, catechin, and vitamin E) as radical scavengers and stabilizers. The titanium oxide composites were prepared via three steps including sol-gel synthesis, carboxylation, and esterification. The characterization of the titanium-phenol composites was carried out by FTIR, PXRD, UV-vis and SEM methods. The radical scavenging ability of the novel materials was evaluated using DPPH and an in vitro LPO assay using isolated rat liver mitochondria. The novel materials exhibit both a higher stability and an antioxidant activity in comparison to bare TiO2. It was found that curcumin and quercetin based composites show the highest antioxidant efficiency among the composites under study followed by catechin and vitamin E based materials. The results from an MTT assay carried out on the Caco-2 cell line indicate that the composites do not contribute to the cytotoxicity in vitro. This study demonstrates that a combination of powerful antioxidants with titanium dioxide can change its functional properties and provide a convenient strategy against oxidative stress.

2.
Nanotechnology ; 29(27): 275705, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29667939

RESUMO

Herein, we report a simple method for a covalent modification of surface supported graphene with photoactive dyes. Graphene was fabricated on cubic-SiC/Si(001) wafers due to their low cost and suitability for mass-production of continuous graphene fit for electronic applications on millimetre scale. Functionalisation of the graphene surface was carried out in solution via white light induced photochemical generation of phenazine radicals from phenazine diazonium salt. The resulting covalently bonded phenazine-graphene hybrid structure was characterised by scanning tunnelling microscopy (STM) and spectroscopy (STS), Raman spectroscopy and density functional theory (DFT) calculations. It was found that phenazine molecules form an overlayer, which exhibit a short range order with a rectangular unit cell on the graphene surface. DFT calculations based on STM results reveal that molecules are standing up in the overlayer with the maximum coverage of 0.25 molecules per graphene unit cell. Raman spectroscopy and STM results show that the growth is limited to one monolayer of standing molecules. STS reveals that the phenazine-graphene hybrid structure has a band gap of 0.8 eV.

3.
Chem Commun (Camb) ; 53(77): 10715-10718, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28914291

RESUMO

Herein, we report a novel strategy for a covalent modification of graphene nanoplatelets with photoactive dyes. The functionalization of the graphene surface was carried out using white light to photochemically generate phenazine radicals and the reaction progress was followed up spectrophotometrically. The characterization of the modified material was carried out using FTIR, XRD, UV-vis absorption, fluorescence, Raman spectroscopy and SEM imaging. The hybrid material has improved solubility, shows an optical band gap of 1.95 eV and is highly emissive in the visible wavelength region.

4.
Nat Commun ; 8: 14453, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198379

RESUMO

Graphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples. Here we investigate the magnetoresistance of graphene grown on technologically relevant SiC/Si(001) wafers, where inherent nanodomain boundaries sandwich zig-zag structures between adjacent ripples of large curvature. Localized states at the nanodomain boundaries result in an unprecedented positive in-plane magnetoresistance with a strong temperature dependence. Our work may offer a tantalizing way to add the spin degree of freedom to graphene.

5.
ACS Nano ; 9(9): 8967-75, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26302083

RESUMO

Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of ∼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC.

6.
ACS Nano ; 8(5): 5190-8, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24766567

RESUMO

Oxygen binding and cleavage are important for both molecular recognition and catalysis. Mn-based porphyrins in particular are used as catalysts for the epoxidation of alkenes, and in this study the homolytic cleavage of O2 by a surface-supported monolayer of Mn porphyrins on Ag(111) is demonstrated by scanning tunneling microscopy, X-ray absorption, and X-ray photoemission. As deposited, {5,10,15,20-tetraphenylporphyrinato}Mn(III)Cl (MnClTPP) adopts a saddle conformation with the average plane of its macrocycle parallel to the substrate and the axial Cl ligand pointing upward, away from the substrate. The adsorption of MnClTPP on Ag(111) is accompanied by a reduction of the Mn oxidation state from Mn(III) to Mn(II) due to charge transfer between the substrate and the molecule. Annealing the Mn(II)ClTPP monolayer up to 510 K causes the chlorine ligands to desorb from the porphyrins while leaving the monolayer intact. The Mn(II)TPP is stabilized by the surface acting as an axial ligand for the metal center. Exposure of the Mn(II)TPP/Ag(111) system to molecular oxygen results in the dissociation of O2 and forms pairs of Mn(III)OTPP molecules on the surface. Annealing at 445 K reduces the Mn(III)OTPP complex back to Mn(II)TPP/Ag(111). The activation energies for Cl and O removal were found to be 0.35 ± 0.02 eV and 0.26 ± 0.03 eV, respectively.

7.
Nanotechnology ; 25(13): 135605, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24594516

RESUMO

The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by ±13.5° relative to the left angle bracket 110 right angle bracket-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 × 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 × 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers.

8.
Chem Commun (Camb) ; 50(26): 3447-9, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24548915

RESUMO

A Ni-Cu ion exchange has been observed for (5,15-dibromo-10,20-diphenylporphyrinato)nickel(II) (NiDBrDPP) and (5,10,15,20-tetrakis(4-bromophenyl)porphyrinato)nickel(II) (NiTBrPP) on Cu(111). The ion exchange proceeds at a faster rate for the NiDBrDPP/Cu(111) system compared to NiTBrPP/Cu(111). This is explained in terms of the macrocycle-substrate distance and the distortions that occur when the molecules are deposited on the Cu(111) surface.


Assuntos
Cobre/química , Níquel/química , Porfirinas/química , Cinética , Análise Espectral
9.
Chem Commun (Camb) ; 50(18): 2265-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24435072

RESUMO

The dimensions and cavity sizes of the molecular capsules with the general formula [V10O18L4](10-) can be controlled modularly through the nature of the bifunctional, rigid organophosphonate ligands L(1) and L(2) (L(1) = bis(4-phosphonatophenyl)ethyne and L(2) = bis(4-phosphonatophenyl)butadiyne); the solution stability of the molecular entities as demonstrated by ESI-MS studies permits their assembly on the Au(111) surface on a sub-monolayer scale giving rise to a 2D supramolecular structure that is comparable to the packing arrangements of the capsules in the crystal structures.

10.
Nanoscale ; 5(8): 3380-6, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23467592

RESUMO

Understanding molecular switching between different charge states is crucial to further progress in molecule-based nano-electronic devices. Herein we have employed scanning tunnelling microscopy to visualize different charge states of a single C60 molecule within a molecular layer grown on the WO2/W(110) surface. The results obtained demonstrate that individual C60 molecules within the layer switch between neutral and negatively charged states in the temperature range of 220-260 K over the time scale of the experiment. The charging of the C60 causes changes in the local density of electron states and consequently a variation in tunnelling current. Using density functional theory calculations, it was found that the charged state corresponds to the negatively charged C60(-), which has accepted an electron. The switching of the molecule into the charged state is triggered continuously by tunnelling electrons when the STM tip is static above an individual C60 molecule with a bias applied. Molecular movement accompanies the molecule's switching between these states.

11.
Chem Commun (Camb) ; 47(44): 12134-6, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21993371

RESUMO

A strong molecule-surface interaction between free-base-tetra(4-bromophenyl)-porphyrin and Cu(111) results in a distortion of both the molecule and the underlying copper surface in the vicinity of the molecule. This in turn leads to the formation of an intermediate complex due to bonding between the iminic nitrogens and surface copper atoms.


Assuntos
Cobre/química , Porfirinas/química , Microscopia de Tunelamento , Espectroscopia Fotoeletrônica , Temperatura , Espectroscopia por Absorção de Raios X
12.
Phys Chem Chem Phys ; 12(25): 6666-71, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20390144

RESUMO

The growth and ordering of 5-(10,15,20-triphenylporphyrinatonickel(ii))dimer (NiTPP-dimer) molecules on the Ag(111) surface have been investigated using scanning tunnelling microscopy/spectroscopy (STM/STS) and low-energy electron diffraction (LEED). At one monolayer (ML) coverage the NiTPP-dimer forms a well-ordered close-packed molecular layer in which the porphyrin molecules have a flat orientation with the molecular plane lying parallel to the substrate. STM and LEED data obtained from one monolayer of the NiTPP-dimer on the Ag(111) surface show the formation of three domains which grow along the main crystallographic directions of the substrate. Scanning tunnelling spectroscopy data obtained from the NiTPP-dimer on the Ag(111) surface show good agreement with optical band gap measurements and density functional theory calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...