Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 17(8): e202400587, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38546420

RESUMO

Invited for this issue's cover are researchers from Tallinn University of Technology (TalTech). The image depicts the lignin chemical evolution route from raw biomass through a greener chloromethylation procedure developed by the research team. It showcases the transformation into lignin-supported metal nanoparticles, serving as a catalyst for various chemical reactions in both batch and continuous flow conditions. The Research Article itself is available at 10.1002/cssc.202301588.

2.
ChemSusChem ; 17(8): e202301588, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279777

RESUMO

We present a novel, greener chloromethylation procedure for organosolv aspen lignin under mild reaction conditions without Lewis acid as a catalyst and in acetic acid as a solvent. This synthetic protocol provides a reliable approach to chloromethylated lignin (CML) and means to obtain valuable lignin derivatives. The resulted CML was subsequently transformed into 1-methylimidazolium lignin (ImL), which effectively serves as a stabilizing agent for Pd/CuO nanoparticles (Pd/CuO-NPs). To evaluate the versatility of developed lignin-based catalyst, we investigate its performance in a series of carbon-carbon bond formation reactions, including Suzuki-Miyaura, Sonogashira, Heck reactions, and azide-alkyne cycloaddition (click) reaction. Remarkably, this catalyst exhibited a high degree of catalytic efficiency, resulting in reactions with yields ranging from average to excellent. The heterogeneous catalyst demonstrated outstanding recyclability, enabling its reuse for at least 10 consecutive reaction cycles, with yields consistently falling within the range of 42 % to 84 %. A continuous flow reactor cartridge prototype employing Lignin@Pd/CuO-NPs was developed, yielding results comparable to those achieved in batch reactions. The utilization of Lignin@Pd/CuO-NPs as a catalyst showcases its potential to facilitate diverse carbon-carbon bond formation reactions and underscores its promising recyclability, aligning with the green chemistry metrics and principles of sustainability in chemical processes.

3.
Polymers (Basel) ; 15(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836028

RESUMO

The transesterification of cellulose with vinyl esters in ionic liquid media is suggested as a prospective environmentally friendly alternative to conventional esterification. In this study, various long-chain cellulose esters (laurate, myristate, palmitate, and stearate) with a degree of substitution (DS) up to 1.8 have been synthesized in novel distillable ionic liquid, [mTBNH][OAC]. This IL has high dissolving power towards cellulose, which can improve homogeneous transesterification. Additionally, [mTBNH][OAC] has durability towards recycling and can be regenerated and re-used again for the next cycles of esterification. DMSO is used as a co-solvent because of its ability to speed up mass transport due to lower solvent viscosity. The optimization of the reaction parameters, such as co-solvent content, temperature (20-80 °C), reaction time (1-5 h), and a molar ratio of reactants (1-5 eq. AGU) is reported. It was found that within studied reaction conditions, DS increases with increasing reaction time, temperature, and added vinyl esters. Structure analysis using FTIR, 1H, and 13C NMR after acylation revealed the introduction of the alkyl chains into cellulose for all studied samples. The results also suggested that the substitution order of the OH group is C7-O6 > C7-O2 > C7-O3. Unique, complex thermal and rheological investigation of the cellulose esters shows the growth of an amorphous phase upon the degree of substitution. At the same time, the homogeneous substitution of cellulose with acyl chains increases the melt viscosity of a material. Internal plasticization in cellulose esters was found to be the mechanism for the melt processing of the material. Long-chain cellulose esters show the potential to replace commonly used externally plasticized cellulose derivatives.

4.
Polymers (Basel) ; 15(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37631467

RESUMO

The circularity of polymer waste is an emerging field of research in Europe. In the present research, the thermal, surface, mechanical, and tribological properties of polypropylene (PP)-based composite produced by injection molding were studied. The pure PP matrix was reinforced with 10, 30, and 40% wt. of pure cotton, synthetic polyester, and polyethylene terephthalate post-consumer fibers using a combination of direct extrusion and injection molding techniques. Results indicate that PP-PCPESF-10% wt. exhibits the highest value of tensile strength (29 MPa). However, the values of tensile and flexural strain were lowered with an increase in fiber content due to the presence of micro-defects. Similarly, the values of modulus of elasticity, flexural modulus, flexural strength, and impact energy were enhanced due to an increase in the amount of fiber. The PP-PCCF-40% wt. shows the highest values of flexural constant (2780 MPa) and strength (57 MPa). Additionally, the increase in fiber loadings is directly proportional to the creation of micro-defects, surface roughness, abrasive wear, coefficient of friction, and erosive wear. The lowest average absolute arithmetic surface roughness value (Ra) of PP and PP-PCCF, 10% wt., were 0.19 µm and 0.28 µm. The lowest abrasive wear value of 3.09 × 10-6 mm3/Nm was found for pure PP. The erosive wear value (35 mm3/kg) of PP-PCCF 40% wt. composite material was 2 to 17 times higher than all other composite materials. Finally, the single-step analysis of variance predicts reasonable results in terms of the p-values of each composite material for commercial applications.

5.
Polymers (Basel) ; 15(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376322

RESUMO

Thermoplastic cellulose esters are promising materials for bioplastic packaging. For that usage, it is important to understand their mechanical and surface wettability properties. In this study, a series of cellulose esters are prepared, such as laurate, myristate, palmitate, and stearate. The aim of the study is to investigate the tensile and surface wettability properties of the synthesized cellulose fatty acid esters to understand their suitability as a bioplastic packaging material. Cellulose fatty acid esters are first synthesized from microcrystalline cellulose (MCC), then dissolved in pyridine solution, and after the solvent cast into thin films. The cellulose fatty acid ester acylation process is characterized by the FTIR method. Cellulose esters hydrophobicity is evaluated with contact angle measurements. The mechanical properties of the films are tested with the tensile test. For all the synthesized films, FTIR provides clear evidence of acylation by showing the presence of characteristic peaks. Films' mechanical properties are comparable to those of generally used plastics such as LDPE and HDPE. Furthermore, it appears that with an increase in the side-chain length, the water barrier properties showed improvement. These results show that they could potentially be suitable materials for films and packaging materials.

6.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458709

RESUMO

Novel composite self-disinfecting films of polylactic acid (PLA) filled with nanosized particles of double sodium-copper(II) paratungstate B Na2Cu3(CuOH)2[W12O40(OH)2]·32H2O (POM) were developed. The solvent casting (POM/PLA film) and solvent-free melt extrusion methods (Extr. POM/PLA film) were applied for film preparation. The copper (II) ion release to water from both types of the films after 10 days at different temperatures demonstrated that the PLA matrix acts as a diffusion barrier, and the resulting concentration of released copper in water at room temperature remained low, at 0.79% for POM/PLA film and 0.51% for Extr. POM/PLA film. The POM-containing films reveals a significant inhibitory effect against E. coli ATCC 25922 in the agar diffusion test. The numbers of CFUs in washes of the films after incubation for 24 h were found to be 3.6 log CFU mL-1 (POM/PLA film) and 4.1 log CFU mL-1 (Extr. POM/PLA film). The films combine the antibacterial properties of POM and a bio-based polymer matrix, which makes them a prospective coating material for applications in hospital indoor environments. Excellent thermal stability of POM gives a technological advantage for industrial manufacturing to allow the processing of novel composite material in the solvent free (molten) state.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Ânions , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cobre/farmacologia , Escherichia coli , Embalagem de Alimentos/métodos , Polieletrólitos , Poliésteres/farmacologia , Estudos Prospectivos , Água/farmacologia
7.
Polymers (Basel) ; 12(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245164

RESUMO

Water-soluble, partially cross-linked poly-2-isopropyl-2-oxazoline combining the properties of chemical and physical gels was synthesized by a two-step procedure. Thermally induced sol-gel transition in its aqueous solution was studied by rheology, light scattering, and turbidimetry. It was demonstrated that the synthesized product is bimodal; it consists of linear and cross-linked components. The cross-linked components are responsible for the gelation, while the linear ones abate the viscosity growth. Heating the solution above the phase transition temperature leads to the self-assembly of the particles into a physical gel. The combination of chemical and physical cross-linking was found to be a prospective route for thermosensitive gel development.

8.
Carbohydr Polym ; 152: 450-458, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27516292

RESUMO

Cellulose esters with long carbon side chains (e.g. stearate) were produced via a homogenous reaction in ionic liquids. The degree of substitution was calculated to approximately 2. The melt rheology was studied for the pure cellulose esters but also combinations of the esters and polypropylene to study the processability of a blended composite material. It was shown that the compatibility between the two components was weak, which resulted in a phase-separated composite material. The morphology and permeability of water and oleic acid of the composite films were studied and it was shown that the water permeability decreased upon addition of the cellulose ester to the polymer. The permeability of oleic acid was however unchanged, which is most probable a result of high solubility in the cellulose ester rich domains of the composites. Also, the following hypothesis is stated: cellulose stearate influence the polypropylene crystallization process by decreasing the size of spherulites.


Assuntos
Celulose , Membranas Artificiais , Ácido Oleico/química , Polipropilenos/química , Ácidos Esteáricos/química , Água/química , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA