Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36771371

RESUMO

Obesity, and its consequences for human health, is a huge and complicated problem that has no simple solution. The constant search for natural and safe compounds with systemic action that can be used for obesity prophylactics and treatment is hampered by the limited availability and variable quality of biomass of wild medicinal plants. Plant cell biotechnology is an alternative approach for the sustainable production of vegetative biomass or individual phytochemicals with high therapeutic potential. In this study, the suspension cell biomass of the medicinal plants, Dioscorea deltoidea Wall., Tribulus terrestris L., and Panax japonicus (T. Nees) C.A. Mey, produced in 20 L and 630 L bioreactors, were tested for therapeutic effects in rat models with alimentary-induced obesity. Three-month intake of water infusions of dry cell biomass (100 mg/g body weight) against the background of a hypercaloric diet reduced weight gain and the proportion of fat mass in the obese animals. In addition, cell biomass preparation reduced the intracellular dehydration and balanced the amounts of intra- and extracellular fluids in the body as determined by bioimpedance spectroscopy. A significant decrease in the glucose and cholesterol levels in the blood was also observed as a result of cell biomass administration for all species. Hypocholesterolemic activity reduced in the line P. japonicus > D. deltoidea > T. terrestris/liraglutide > intact group > control group. By the sum of parameters tested, the cell culture of D. deltoidea was considered the most effective in mitigating diet-induced obesity, with positive effects sometimes exceeding those of the reference drug liraglutide. A safety assessment of D. deltoidea cell phytopreparation showed no toxic effect on the reproductive function of the animals and their offspring. These results support the potential application of the biotechnologically produced cell biomass of medicinal plant species as safe and effective natural remedies for the treatment of obesity and related complications, particularly for the long-term treatment and during pregnancy and lactation periods when conventional treatment is often contraindicated.


Assuntos
Dioscorea , Transtornos do Metabolismo dos Lipídeos , Panax , Plantas Medicinais , Tribulus , Humanos , Feminino , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Dioscorea/química , Hipoglicemiantes/farmacologia , Tribulus/química , Biomassa , Liraglutida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Técnicas de Cultura de Células/métodos , Plantas Medicinais/química , Obesidade/tratamento farmacológico
2.
Nutrients ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836067

RESUMO

In the present study, we explored the therapeutic potential of bioreactor-grown cell cultures of the medicinal plant species Dioscorea deltoidea, Tribulus terrestris and Panax japonicus to treat carbohydrate metabolism disorders (CMDs) in laboratory rats. In the adrenaline model of hyperglycemia, aqueous suspensions of cell biomass pre-administered at a dose of 100 mg dry biomass/kg significantly reduced glucose level in animal blood 1-2.5 h (D. deltoidea and T. terrestris) or 1 h (P. japonicus) after adrenaline hydrochloride administration. In a streptozotocin-induced model of type 2 diabetes mellitus, the cell biomass of D. deltoidea and T. terrestris acted towards normalization of carbohydrate and lipid metabolism, as evidenced by a significant reduction of daily diuresis (by 39-57%), blood-glucose level (by 46-51%), blood content in urine (by 78-80%) and total cholesterol (25-36%) compared to animals without treatment. Bioactive secondary metabolites identified in the cell cultures and potentially responsible for their actions were deltoside, 25(S)-protodioscin and protodioscin in D. deltoidea; furostanol-type steroidal glycosides and quinic acid derivatives in T. terrestris; and ginsenosides and malonyl-ginsenosides in P. japonicus. These results evidenced for high potential of bioreactor-grown cell suspensions of these species for prevention and treatment of CMD, which requires further investigation.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dioscorea , Panax , Extratos Vegetais/farmacologia , Tribulus , Animais , Biomassa , Reatores Biológicos , Glicemia/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Técnicas de Cultura de Células , Colesterol/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Diurese/efeitos dos fármacos , Hematúria/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Plantas Medicinais , Ratos
3.
Int J Exp Pathol ; 100(2): 102-113, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31017330

RESUMO

A major translational barrier to the use of stem cell (SC)-based therapy in patients with myocardial infarction (MI) is the lack of a clear understanding of the mechanism(s) underlying the cardioprotective effect of SCs. Numerous paracrine factors from SCs may account for reduction in infarct size, but myocardial salvage associated with transdifferentiation of SCs into vascular cells as well as cardiomyocyte-like cells may be involved too. In this study, bone marrow-derived rat mesenchymal SC (MSCs) were microencapsulated in alginate preventing viable cell release while supporting their secretory phenotype. The hypothesis on the key role of paracrine factors from MSCs in their cardioprotective activity was tested by comparison of the effect of encapsulated vs free MSCs in the rat model of MI. Intramyocardial administration of both free and encapsulated MSCs after MI caused reduction in scar size (12.1 ± 6.83 and 14.7 ± 4.26%, respectively, vs 21.7 ± 6.88% in controls, P = 0.015 and P = 0.03 respectively). Scar size was not different in animals treated with free and encapsulated MSC (P = 0.637). These data provide evidence that MSC-derived growth factors and cytokines are crucial for cardioprotection elicited by MSC. Administration of either free or encapsulated MSCs was not arrhythmogenic in non-infarcted rats. The consistency of our data with the results of other studies on the major role of MSC secretome components in cardiac protection further support the theory that the use of live, though encapsulated, cells for MI therapy may be replaced with heart-targeted-sustained delivery of growth factors/cytokines.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/terapia , Alginatos , Animais , Arritmias Cardíacas/etiologia , Células Cultivadas , Cicatriz/patologia , Citoproteção/fisiologia , Composição de Medicamentos , Ecocardiografia , Imunofenotipagem , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/imunologia , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Comunicação Parácrina/fisiologia , Ratos Wistar , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...