Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 105(7): 1799-1807, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27192551

RESUMO

In this article, liposome-based coatings aiming to control drug release from therapeutic soft contact lenses (SCLs) materials are analyzed. A PHEMA based hydrogel material loaded with levofloxacin is used as model system for this research. The coatings are formed by polyelectrolyte layers containing liposomes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DMPC + cholesterol (DMPC + CHOL). The effect of friction and temperature on the drug release is investigated. The aim of the friction tests is to simulate the blinking of the eyelid in order to verify if the SCLs materials coated with liposomes are able to keep their properties, in particular the drug release ability. It was observed that under the study conditions, friction did not affect significantly the drug release from the liposome coated PHEMA material. In contrast, increasing the temperature of release leads to an increase of the drug diffusion rate through the hydrogel. This phenomenon is recorded both in the control and in the coated samples. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1799-1807, 2017.


Assuntos
Piscadela , Colesterol , Materiais Revestidos Biocompatíveis , Lentes de Contato Hidrofílicas , Dimiristoilfosfatidilcolina , Colesterol/química , Colesterol/farmacocinética , Colesterol/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/farmacocinética , Dimiristoilfosfatidilcolina/farmacologia , Temperatura Alta , Humanos , Lipossomos
2.
Phys Rev Lett ; 110(9): 094501, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496714

RESUMO

Films are nanoscopic elements of foams, emulsions, and suspensions that form a paradigm for nanochannel transport that eventually tests the limits of hydrodynamic descriptions. Here, we study the collapse of a freestanding film to its equilibrium. The generation of nanoscale films usually is a slow linear process; using thermal forcing we find unprecedented dynamics with exponentially fast thinning. The complex interplay of thermal convection, interface, and gravitational forces yields optimal turbulent mixing and transport. Domains of collapsed film are generated, elongated, and convected in a beautiful display of chaotic mixing. With a time scale analysis, we identify mixing as the dominant dynamical process responsible for exponential thinning.

3.
Acta Biomater ; 9(5): 6741-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23333865

RESUMO

One procedure to treat stenotic coronary arteries is the percutaneous transluminal coronary angioplasty (PTCA). In recent years, drug-eluting stents (DESs) have demonstrated elaborate ways to improve outcomes of intravascular interventions. To enhance DESs, the idea has evolved to design stents that elute specific small interfering RNA (siRNA) for better vascular wall regeneration. Layer-by-layer (LbL) technology offers the possibility of incorporating siRNA nanoplexes (NPs) to achieve bioactive medical implant coatings. The LbL technique was used to achieve hyaluronic acid/chitosan (HA/Chi) films with incorporated Chi-siRNA NPs. The multilayer growth was monitored by quartz crystal microbalance. The coating on the stents and its thickness were analyzed using fluorescence and scanning electron microscopy. All stents showed a homogeneous coating, and the polyelectrolyte multilayers (PEMs) were not disrupted after ethylene oxide sterilization or expansion. The in vitro uptake of fluorescent-labeled NPs from PEMs in primary human endothelial cells (ECs) was analyzed by flow cytometry for 2, 6 and 9 days. Furthermore, stents coated with HA/Chi and Chi-siRNA NPs were expanded into porcine arteries and showed ex vivo delivery of NPs. The films showed no critical results in terms of hemocompatibility. This study demonstrates that Chi-siRNA NPs can be incorporated into PEMs consisting of HA and Chi. We conclude that the NPs were delivered to ECs under in vitro conditions. Furthermore, under ex vivo conditions, NPs were transferred into porcine artery walls. Due to their good hemocompatibility, they might make an innovative tool for achieving bioactive coatings for coronary stents.


Assuntos
Materiais Biocompatíveis , Vasos Coronários , RNA Interferente Pequeno/administração & dosagem , Stents , Endotélio Vascular/citologia , Citometria de Fluxo , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
4.
Adv Colloid Interface Sci ; 183-184: 1-13, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22921844

RESUMO

The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out.

5.
Adv Colloid Interface Sci ; 168(1-2): 71-8, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21496785

RESUMO

The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading to difficulties in the modeling of trapped fraction of foam are discussed in detail. To avoid complications in the interpretation of the results, the best tracer would be one with a permeability close to the permeability of the gas in the foam. This puts a lower limit on the effective diffusion coefficient for tracer in an experiment.

6.
Colloids Surf B Biointerfaces ; 78(2): 317-27, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20399624

RESUMO

The surface interactions of Meibomian gland secretion (MGS) with polar lipid (PL), Egg Sphingomyelin (SM) or Dipalmitoylphosphatidylcholine (DPPC), are studied in mixed pseudo-binary films formed at the air/water interface of Langmuir surface balance. The behavior of the mixed films during slow quasi-equilibrium compression and during fast dynamic compression-decompression is registered by measurements of surface pressure and surface potential, and by monitoring film morphology with Brewster Angle Microscopy (BAM). Quasi-equilibrium compression isotherms are used to calculate the excess Gibbs and Helmholtz energy of mixing between MGS and PLs and thus to evaluate the interactions between the lipid compounds at the interface. The effects of PLs on the mixed film's elastic moduli of area compressibility, morphology and capability to attain high surface pressures are also examined. PLs interact with MGS with different strength and in different manner: MGS-SM interaction is weak and might lead to interfacial disaggregation of the thick meibium domains when SM is in excess, while MGS-DPPC interaction is strong and results in the formation of thick lipid aggregates. Both PLs increase the mixed films reciprocal compressibility and capability to achieve higher surface pressures. The results demonstrate that in vitro studies of the surface interactions between MGS and PLs might be beneficial in the selection of PLs for artificial tear formulations and for examination on molecular scale of the possible role of PLs at the ocular surface.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Glândulas Tarsais/química , 1,2-Dipalmitoilfosfatidilcolina/química , Ar , Algoritmos , Animais , Bovinos , Metabolismo dos Lipídeos , Glândulas Tarsais/metabolismo , Membranas Artificiais , Microscopia/métodos , Estrutura Molecular , Pressão , Esfingomielinas/química , Esteróis/química , Propriedades de Superfície , Tensão Superficial , Lágrimas/química , Termodinâmica , Água/química , Ceras/química
7.
Langmuir ; 25(5): 2881-6, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19437763

RESUMO

The gas permeability of equilibrium foam films stabilized with an alpha-olefin sulfonate surfactant was measured. The permeability coefficient, K (cm/s), was obtained as a function of the electrolyte (NaCl) concentration, surfactant concentration, and temperature. The addition of salt to the film-forming solution leads to a decrease of the film thickness, which was complemented by an increase of K up to a certain value. Above that critical salt concentration, the gas permeability decreases even though the film thickness also decreases. We explain this effect as a result of interplay of the film thickness and the adsorption monolayer permeability for the permeability of the whole film, i.e., the thermodynamic state of the film. The classical theories that explain the process were applied. The gas permeability of the film showed an unexpected increase at surfactant concentrations well above the critical micelle concentration. The origin of this effect remains unclear and requires further studies to be clarified. The experiments at different temperatures allowed the energy barrier of the permeability process to be estimated.

8.
Langmuir ; 25(5): 3255-9, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19437787

RESUMO

The sequential adsorption of oppositely charged polyelectrolytes called the "layer by layer" technique is a method for formation of ultrathin films with controlled thickness and interfacial properties. Composition of polyelectrolyte solutions, pH, and electrolyte concentration are important parameters governing formation of multilayer films. Since pH is the factor controlling charge of weak polyelectrolytes, the structure of multilayers should be sensitive to its value. In this paper we focused on formation of PE multilayer films composed from weak and strong polyelectrolytes. We used weak, branched polycation polyethyleneimine (PEI, 70 kDa) and strong polyanion poly-4-styrenesulfonate (PSS, 70 kDa) to form films by the layer-by-layer technique on the surface of silicon wafers under two deposition conditions: pH = 6 when PEI was strongly charged and pH = 10.5 when the charge density of PEI was low. Thicknesses of films were measured by single wavelength ellipsometry, and the results were confronted with ones concerning mass of the adsorbed films obtained by quartz crystal microbalance. We found that, depending on pH of the solutions, combination of weakly and strongly charged polyelectrolytes gave either linear or nonmonotonic increase of film thickness with a number of deposited PE layers. We observed a good correlation between multilayer film thickness and adsorbed mass. The atomic force microscopy images of surface topography of PEI/PSS films demonstrated large differences between films deposited at pH = 6 and 10.5. Additionally the cyclic voltamperometry was used to determine the differences in permeability of films formed at various pH conditions.

9.
Adv Colloid Interface Sci ; 137(1): 27-44, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17905142

RESUMO

The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

10.
Langmuir ; 23(2): 549-57, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17209606

RESUMO

The paper presents results documenting the mechanism of facilitation of the three-phase contact (TPC) formation due to gas entrapped during immersion of hydrophobic (Teflon) plates into distilled water and n-octanol solutions. Collisions, bouncing, the time scale of the TPC formation, and bubble attachment to Teflon plates of different surface roughness were studied using a high-speed camera. Processes occurring during the microscopic wetting film formation at the Teflon plates were monitored using the microinterferometric method (Scheludko-Exerowa cell). A strong relation between the time necessary to form a stable TPC and the roughness of the Teflon was observed. The higher the Teflon roughness was the shorter the time for the TPC formation. This effect can be attributed to two factors: (i) local differences in the thickness of the thinning intervening liquid layer (quicker attainment of rupture thickness at pillars of rough surface) and/or (ii) the presence of gas at the hydrophobic surface. Experimental findings, that (i) prolongation of the plate immersion time resulted in quicker TPC formation, (ii) white irregular and disappearing spots (air pockets) were recorded during the wetting film formation, and (iii) high n-octanol concentration caused prolongation of the time of the TPC formation, show that attachment (TPC formation) of the colliding bubble to hydrophobic surfaces was facilitated by air entrapped at the Teflon plates (and re-distributed) during their immersion into water phase. Thus, on collision instead of solid/gas wetting liquid film a thin gas/liquid/gas foam film was formed which facilitated the TPC formation.

11.
Langmuir ; 22(19): 7981-5, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16952231

RESUMO

The gas permeability and stability of foam films stabilized by n-dodecyl-beta-D-maltoside (beta-C(12)G(2)) were determined. The permeability coefficient (K, cm/s) and the mean film lifetime were measured as a function of the surfactant concentration. The films are less permeable than those stabilized by other surfactants at comparable conditions. The permeability coefficient decreases with increasing surfactant concentration. It does not show a remarkable dependence on the salt concentration. Stable Newton black foam films (NBFs) are formed above a surfactant concentration of 3.9 x 10(-)(6) M beta-C(12)G(2) in the presence of 0.2 M NaCl. The theory of nucleation hole formation in NBFs was applied to describe the observed dependencies of the permeability and film stability on the surfactant concentration. The theory gave satisfactory relation to the experiment.


Assuntos
Gases/química , Glucosídeos/química , Detergentes/química , Permeabilidade , Propriedades de Superfície , Termodinâmica , Fatores de Tempo
12.
Langmuir ; 21(26): 12222-8, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16342996

RESUMO

Gas permeability and thin-film interferometry are used as a tool to elucidate the orientation of polymeric headgroups in free-standing foam films. Nonionic polyoxyethylene (EO) surfactants were used to stabilize the foam films, keeping the size of the hydrophobic part constant (C12) and varying the size of the hydrophilic (EO numbers) part. The effect of headgroup size on the gas permeability of Newton black foam films was studied. Thickness, contact angle, and surface tension were measured to understand the permeation mechanism. Increase of film thickness and surface tension was observed while increasing the headgroup size, but the contact angle remains small and constant. Upon increasing the headgroup size, the permeability decreases showing that the headgroups provide a resistance to permeation. For smaller headgroups, the permeability follows a linear dependence on the film thickness, whereas for larger headgroups, the permeability essentially deviates from linearity. We use the conventional "coil model" of the EO chains to explain the observed results providing a detailed picture of the orientation of this important molecule in a confined volume of foam films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA