Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2312276120, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38051770

RESUMO

Pseudomonas aeruginosa can cause a wide array of chronic and acute infections associated with its ability to rapidly switch between planktonic, biofilm, and dispersed lifestyles, each with a specific arsenal for bacterial survival and virulence. At the cellular level, many of the physiological transitions are orchestrated by the intracellular second messenger c-di-GMP and its receptor-effector FleQ. A bacterial enhancer binding protein, FleQ acts as a master regulator of both flagellar motility and adherence factor secretion and uses remarkably different transcription activation mechanisms depending on its dinucleotide loading state, adenosine triphosphatase (ATPase) activity, interactions with polymerase sigma (σ) factors, and complexation with a second ATPase, FleN. How the FleQ-FleN tandem can exert diverse effects through recognition of a conserved FleQ binding consensus has remained enigmatic. Here, we provide cryogenic electron microscopy (cryo-EM) structures of both c-di-GMP-bound and c-di-GMP-free FleQ-FleN complexes which deepen our understanding of the proteins' (di)nucleotide-dependent conformational switching and fine-tuned roles in gene expression regulation.


Assuntos
Pseudomonas aeruginosa , Transativadores , Transativadores/metabolismo , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Biofilmes , Adenosina Trifosfatases/metabolismo , GMP Cíclico/metabolismo
2.
PLoS Genet ; 18(1): e1009991, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020734

RESUMO

In rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Proteômica/métodos , Vibrio cholerae/fisiologia , Proteínas de Bactérias/genética , Polaridade Celular , Parede Celular/metabolismo , Quimiotaxia , Flagelos/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Transporte Proteico
3.
FEMS Microbiol Rev ; 46(2)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34634120

RESUMO

Cellulose is the most abundant biological compound on Earth and while it is the predominant building constituent of plants, it is also a key extracellular matrix component in many diverse bacterial species. While bacterial cellulose was first described in the 19th century, it was not until this last decade that a string of structural works provided insights into how the cellulose synthase BcsA, assisted by its inner-membrane partner BcsB, senses c-di-GMP to simultaneously polymerize its substrate and extrude the nascent polysaccharide across the inner bacterial membrane. It is now established that bacterial cellulose can be produced by several distinct types of cellulose secretion systems and that in addition to BcsAB, they can feature multiple accessory subunits, often indispensable for polysaccharide production. Importantly, the last years mark significant progress in our understanding not only of cellulose polymerization per se but also of the bigger picture of bacterial signaling, secretion system assembly, biofilm formation and host tissue colonization, as well as of structural and functional parallels of this dominant biosynthetic process between the bacterial and eukaryotic domains of life. Here, we review current mechanistic knowledge on bacterial cellulose secretion with focus on the structure, assembly and cooperativity of Bcs secretion system components.


Assuntos
Biofilmes , Celulose , Bactérias , Proteínas de Bactérias/química , Polissacarídeos
4.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33563593

RESUMO

Many free-living and pathogenic enterobacteria secrete biofilm-promoting cellulose using a multicomponent, envelope-embedded Bcs secretion system under the control of intracellular second messenger c-di-GMP. The molecular understanding of system assembly and cellulose secretion has been largely limited to the crystallographic studies of a distantly homologous BcsAB synthase tandem and a low-resolution reconstruction of an assembled macrocomplex that encompasses most of the inner membrane and cytosolic subunits and features an atypical layered architecture. Here, we present cryo-EM structures of the assembled Bcs macrocomplex, as well as multiple crystallographic snapshots of regulatory Bcs subcomplexes. The structural and functional data uncover the mechanism of asymmetric secretion system assembly and periplasmic crown polymerization and reveal unexpected subunit stoichiometry, multisite c-di-GMP recognition, and ATP-dependent regulation.

5.
mBio ; 11(4)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788377

RESUMO

Most bacteria respond to surfaces by biogenesis of intracellular c-di-GMP, which inhibits motility and induces secretion of biofilm-promoting adherence factors. Bacterial cellulose is a widespread biofilm component whose secretion in Gram-negative species requires an inner membrane, c-di-GMP-dependent synthase tandem (BcsAB), an outer membrane porin (BcsC), and various accessory subunits that regulate synthase assembly and function as well as the exopolysaccharide's chemical composition and mechanical properties. We recently showed that in Escherichia coli, most Bcs proteins form a megadalton-sized secretory nanomachine, but the role and structure of individual regulatory components remained enigmatic. Here, we demonstrate that essential-for-secretion BcsR and BcsQ regulate each other's folding and stability and are recruited to the inner membrane via c-di-GMP-sensing BcsE and its intraoperon partner BcsF. Crystallographic and solution-based data show that BcsE's predicted GIL domain is a degenerate receiver-GGDEF domain tandem (BcsEREC*-GGDEF*), where the divergent diguanylate cyclase module binds both dimeric c-di-GMP and BcsQ through mutually independent interfaces. In addition, we reveal that a third N-terminal domain (BcsENTD) determines the protein's homooligomerization and targeting of BcsERQ to the membrane as well as previously unreported interactions with transcription antitermination complex components. Together, the data suggest that BcsE acts on multiple levels to fine-tune bacterial cellulose secretion, from the early stages of secretion system assembly to the maintenance of a membrane-proximal pool of dimeric c-di-GMP for processive synthase activation.IMPORTANCE Bacterial cellulose is a widespread biofilm component that can modulate microbial fitness and virulence both in the environment and infected hosts. Whereas its secretion generally involves an inner membrane c-di-GMP-dependent synthase tandem (BcsAB) across the bacterial domain of life, enterobacteria feature sophisticated Escherichia coli-like Bcs secretion systems, where multiple additional subunits are either required for secretion or contribute to the maximal production of the polysaccharide in vivo. Here, we demonstrate that essential-for-secretion BcsR and BcsQ regulate each other's folding and stability and are recruited to the inner membrane via c-di-GMP-sensing BcsE and its intraoperon partner, BcsF. Crystallographic and functional data reveal that BcsE features unexpected domain architecture and likely acts on multiple levels to fine-tune bacterial cellulose production, from the early stages of secretion system assembly to the maintenence of a membrane-proximal pool of dimeric c-di-GMP for processive synthase activation.


Assuntos
Celulose/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Biofilmes , GMP Cíclico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo
6.
Nat Commun ; 8(1): 2065, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234007

RESUMO

Secreted exopolysaccharides present important determinants for bacterial biofilm formation, survival, and virulence. Cellulose secretion typically requires the concerted action of a c-di-GMP-responsive inner membrane synthase (BcsA), an accessory membrane-anchored protein (BcsB), and several additional Bcs components. Although the BcsAB catalytic duo has been studied in great detail, its interplay with co-expressed subunits remains enigmatic. Here we show that E. coli Bcs proteins partake in a complex protein interaction network. Electron microscopy reveals a stable, megadalton-sized macromolecular assembly, which encompasses most of the inner membrane and cytosolic Bcs components and features a previously unobserved asymmetric architecture. Heterologous reconstitution and mutational analyses point toward a structure-function model, where accessory proteins regulate secretion by affecting both the assembly and stability of the system. Altogether, these results lay the foundation for more comprehensive models of synthase-dependent exopolysaccharide secretion in biofilms and add a sophisticated secretory nanomachine to the diverse bacterial arsenal for virulence and adaptation.


Assuntos
Sistemas de Secreção Bacterianos/metabolismo , Celulose/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Adaptação Fisiológica/fisiologia , Sistemas de Secreção Bacterianos/química , Biofilmes , GMP Cíclico/metabolismo , Análise Mutacional de DNA , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica , Modelos Biológicos , Ligação Proteica , Domínios Proteicos/fisiologia , Mapas de Interação de Proteínas/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Software , Relação Estrutura-Atividade
7.
Nat Chem Biol ; 13(4): 350-359, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28328921

RESUMO

Since the discovery of c-di-GMP almost three decades ago, cyclic dinucleotides (CDNs) have emerged as widely used signaling molecules in most kingdoms of life. The family of second messengers now includes c-di-AMP and distinct versions of mixed cyclic GMP-AMP (cGAMP) compounds. In addition to these nucleotides, a vast number of proteins for the production and turnover of these molecules have been described, as well as effectors that translate the signals into physiological responses. The latter include, but are not limited to, mechanisms for adaptation and survival in prokaryotes, persistence and virulence of bacterial pathogens, and immune responses to viral and bacterial invasion in eukaryotes. In this review, we will focus on recent discoveries and emerging themes that illustrate the ubiquity and versatility of cyclic dinucleotide function at the transcriptional and post-translational levels and, in particular, on insights gained through mechanistic structure-function analyses.


Assuntos
Eucariotos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Células Procarióticas/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/metabolismo , Humanos , Modelos Moleculares , Nucleotídeos Cíclicos/química , Processamento de Proteína Pós-Traducional
8.
Protein Sci ; 21(7): 929-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22593024

RESUMO

An intracellular second messenger unique to bacteria, c-di-GMP, has gained appreciation as a key player in adaptation and virulence strategies, such as biofilm formation, persistence, and cytotoxicity. Diguanylate cyclases containing GGDEF domains and phosphodiesterases containing either EAL or HD-GYP domains have been identified as the enzymes controlling intracellular c-di-GMP levels, yet little is known regarding signal transmission and the sensory targets for this signaling molecule. Although limited in number, identified c-di-GMP receptors in bacteria are characterized by prominent diversity and multilevel impact. In addition, c-di-GMP has been shown to have immunomodulatory effects in mammals and several eukaryotic c-di-GMP sensors have been proposed. The structural biology of c-di-GMP receptors is a rapidly developing field of research, which holds promise for the development of novel therapeutics against bacterial infections. In this review, we highlight recent advances in identifying bacterial and eukaryotic c-di-GMP signaling mechanisms and emphasize the need for mechanistic structure-function studies on confirmed signaling targets.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Transdução de Sinais , Bactérias/química , Proteínas de Bactérias/química , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
9.
PLoS Biol ; 6(3): e67, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18366254

RESUMO

Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP), a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Catálise , Cromatografia em Gel , Cristalografia por Raios X , GMP Cíclico/metabolismo , Dimerização , Ativação Enzimática , Estabilidade Enzimática , Proteínas de Escherichia coli , Retroalimentação Fisiológica , Luz , Modelos Biológicos , Peso Molecular , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/isolamento & purificação , Fosforilação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...