Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36772150

RESUMO

Unmanned aerial vehicles (UAVs) have become very popular tools for geoinformation acquisition in recent years. They have also been applied in many other areas of life. Their navigation is highly dependent on global navigation satellite systems (GNSS). The European Geostationary Navigation Overlay Service (EGNOS) is intended to support GNSSs during positioning, mainly for aeronautical applications. The research presented in this paper concerns the analysis of the positioning quality of a modified GPS/EGNOS algorithm. The calculations focus on the source of ionospheric delay data as well as on the aspect of smoothing code observations with phase measurements. The modifications to the algorithm concerned the application of different ionospheric models for position calculation. Consideration was given to the EGNOS ionospheric model, the Klobuchar model applied to the GPS system, the Klobuchar model applied to the BeiDou system, and the NeQuick model applied to the Galileo system. The effect of removing ionospherical corrections from GPS/EGNOS positioning on the results of the determination of positioning quality was also analysed. The results showed that the original EGNOS ionospheric model maintains the best accuracy results and a better correlation between horizontal and vertical results than the other models examined. The additional use of phase-smoothing of code observations resulted in maximum horizontal errors of approximately 1.3 m and vertical errors of approximately 2.2 m. It should be noted that the results obtained have local characteristics related to the area of north-eastern Poland.

2.
Sensors (Basel) ; 22(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009563

RESUMO

The paper presents the results of research on improving the accuracy of aircraft positioning using RTK-OTF (Real Time Kinematic-On The Fly) technique in air navigation. The paper shows a new solution of aircraft positioning for the application of the differential RTK-OTF technique in air navigation. In particular, a new mathematical model is presented which makes it possible to determine the resultant position of an aircraft based on the solution for the method of least squares in a stochastic process. The developed method combines in the process of alignment of GPS (Global Positioning System) observations, three independent solutions of the aircraft position in OTF mode for geocentric coordinates XYZ of the aircraft. Measurement weights as a function of the vector length and the mean vector length error, respectively, were used in the calculations. The applied calculation method makes it possible to determine the resultant position of the aircraft with high accuracy: better than 0.039 m with using the measurement weight as a function of the vector length and better than 0.009 m with the measurement weight as a function of the mean error of the vector length, respectively. In relation to the classical RTK-OTF solution as a model of the arithmetic mean, the proposed method makes it possible to increase the accuracy of determination of the aircraft position by 45-46% using the measurement weight as a function of the vector length, and 86-88% using the measurement weight as a function of the mean error of the vector length, respectively. The obtained test results show that the developed method improves to significantly improve the accuracy of the RTK-OTF solution as a method for determining the reference position in air navigation.

3.
Sensors (Basel) ; 20(19)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020455

RESUMO

This paper presents DGNSS network code positioning using permanent geodetic networks, commonly used in GNSS measurements. Using several reference stations at the same time allows for the independent control of GNSS positioning and facilitates the more realistic estimation of accuracy. Test calculations were made on the basis of real GPS data, using one TRIMBLE mobile receiver and four nearest reference stations of the ASG-EUPOS geodetic system. In addition, DGNSS positioning computational simulations were performed for a case where one mobile GNSS receiver would be able to be used with two (e.g., GPS + Galileo or GPS + GLONASS) or four different positioning systems and different GNSS reference station systems at the same time. To reduce the deviations of the DGPS positioning from a true value, the Kalman filtering for horizontal coordinates and vertical ones was used. The result shows a significant improvement in DGPS positioning accuracy. Based on the numerical analysis carried out, it can be seen that when four GNSS systems are used, it is possible to achieve a DGNSS accuracy of 0.1 m and 0.2 m for horizontal and height coordinates, respectively, using only code measurements. Additionally, the paper presents the impact of the DGNSS code positioning accuracy on the effectiveness of determining ambiguities of phase observations on individual measurement epochs, using the L1-L5 observations of the GPS system and the precise and fast method of ambiguity resolution (PREFMAR). The developed DGNSS positioning methodology can be applied for reliable GNSS navigation using at least two independent GNSS systems.

4.
Sensors (Basel) ; 20(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878144

RESUMO

The paper describes and presents a new calculation strategy for the determination of the aircraft's resultant position using the GPS (Global Positioning System) SPP (Single Point Positioning) code method. The paper developed a concept of using the weighted average model with the use of measuring weights to improve the quality of determination of the coordinates and accuracy of GPS SPP positioning. In this research, measurement weights were used as a function of the number of GPS satellites being tracked, and geometric PDOP (Position Dilution of Precision) coefficient. The calculations were made using navigation data recorded by two independent GPS receivers: Thales Mobile Mapper and Topcon HiPerPro. On the basis of the obtained results, it was found that the RMS (Root Mean Square) accuracy of positioning for XYZ geocentric coordinates was better than 1.2% to 33.7% for the weighted average method compared to a single GPS SPP solution. The proposed approach is therefore of practical application in air navigation to improve the quality of aircraft positioning.

5.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235680

RESUMO

The aim of this paper is to present the problem of the implementation of the EGNOS (European Geostationary Navigation Overlay Service) data for the processing of aircraft position determination. The main aim of the research is to develop a new computational strategy which might improve the performance of the EGNOS system in aviation, based on navigation solutions of an aircraft position, using several GNSS (Global Navigation Satellite System) onboard receivers. The results of an experimental test conducted by the Cessna 172 at EPDE (European Poland Deblin) (ICAO (International Civil Aviation Organization) code, N51°33.07'/E21°53.52') aerodrome in Deblin are presented and discussed in this paper. Two GNSS navigation receivers with the EGNOS positioning function for monitoring changes in the parameters of the aircraft position in real time during the landing phase were installed onboard a Cessna 172. Based on obtained research findings, it was discovered that the positioning accuracy was not higher than 2.1 m, and the integrity of positioning did not exceed 19 m. Moreover, the availability parameter was found to equal 1 (or 100%); also, no intervals in the continuity of the operation of the EGNOS system were recorded. In the paper, the results of the air test from Deblin were compared with the parameters of positioning quality from the air test conducted in Chelm (ICAO code: EPCD, N51°04'57.8" E23°26'15"). In the air test in Chelm, the obtained parameters of EGNOS quality positioning were: better than 4.9 m for accuracy, less than 35.5 m for integrity, 100% for availability, and no breaks in continuity. Based on the results of the air tests in Deblin and Chelm, it was concluded that the parameters of the EGNOS positioning quality in aviation for the SBAS (Satellite Based Augmentation System) APV (Approach to Vertical guidance) procedure were satisfied in accordance with the ICAO (International Civil Aviation Organization) requirements. The presented research method can be utilized in the SBAS APV landing procedure in Polish aviation. In this paper, the results of PDOP (Position Dilution of Precision) are presented and compared to the two air tests in Deblin and Chelm. The maximum results of PDOP amounted to 1.4 in the air test in Deblin, whereas they equaled 4.0 in the air test in Chelm. The paper also shows how the EGNOS system improved the aircraft position in relation to the only GPS solution. In this context, the EGNOS system improved the aircraft position from about 78% to 95% for each ellipsoidal coordinate axis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31878182

RESUMO

The article presents an assessment of the long-term variability of storm activity in the aspect of potential threats to aircraft. The analysis of data from the period 1970-2018 was conducted for selected airports in Poland: Gdansk Lech Walesa Airport, IATA code: GDN, ICAO code: EPGD (54°22'39″N 18°27'59″E, altitude above sea level 149 m above sea level); Solidarity Szczecin- Goleniow Airport, IATA code: SZZ, ICAO code: EPSC (53°35'05″ N 14°54'08″ E, altitude above sea level 47 m above sea level); Poznan-Lawica Henryk Wieniawski Airport, IATA code: POZ, ICAO code: EPPO (52°25'16″ N 16°49'35″ E, altitude above sea level 94 m above sea level); Warsaw Chopin Airport, IATA code: WAW, ICAO code: EPWA (52°09'57″ N 20°58'02″ E, altitude above sea level 110 m above sea level); Copernicus Airport Wroclaw, IATA code: WRO, ICAO code: EPWR (51°06'10″ N 16°53'10″ E, altitude above sea level 123 m above sea level); John Paul II International Airport Kraków-Balice, IATA code: KRK, ICAO code: EPKK (50°04'40″ N 19°47'06″ E, altitude above sea level 241 m above sea level). The purpose of this paper is to assess the long-term variability of storm activity in the aspect of potential threats to air operations in Poland with the examples of six selected airports. In order to achieve the goal, an analysis of the frequency of storm phenomena in Poland was carried out both in annual and long- term terms. The analysis will allow the assessment of the geographical diversity of the distribution of storm phenomena and their variability in the years 1970-2018. The next stage of the work will be to determine the climatic conditions that exert the greatest impact on the formation of storms. The important factors include atmospheric circulation, which, over the Polish territory, is shaped by the influence of air masses from the Atlantic Ocean, the Baltic Sea and in addition, from the vast continental area. All these air masses clash over the area of Poland causing large variability in the frequency of occurrence of hazardous atmospheric phenomena. For this reason, the Polish climate is defined as a moderate warm climate with transitory features. The important factors affecting regional diversity are local conditions, such as terrain, nature of the land, and distance from water reservoirs. The thermal, humidity and aerodynamic properties of the substrate, which are components of radiation processes, determine the exchange of energy at the interface between the atmosphere and the earth, and largely determine the intensity of selected hazardous atmospheric phenomena. Each occurrence of a storm is a potentially dangerous meteorological event that threatens the environment and human activities, including all types of transport. The studied phenomenon of storms is particularly dangerous for air transport. Literature shows that storm phenomena in Poland are characterized by a large regional diversity, both during the year and over many years. The greatest threat of storm phenomena occurs in the warm period of the year-spring and summer.


Assuntos
Aeronaves/estatística & dados numéricos , Aeroportos/estatística & dados numéricos , Aeroportos/tendências , Tempestades Ciclônicas/estatística & dados numéricos , Medição de Risco/estatística & dados numéricos , Medição de Risco/tendências , Estações do Ano , Previsões , Meteorologia , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...