Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasite ; 30: 5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762942

RESUMO

Balancing process efficiency and adult sterile male biological quality is one of the challenges in the success of the sterile insect technique (SIT) against insect pest populations. For the SIT against mosquitoes, many stress factors need to be taken into consideration when producing sterile males that require high biological quality to remain competitive once released in the field. Pressures of mass rearing, sex sorting, irradiation treatments, packing, transport and release including handling procedures for each step, add to the overall stress budget of the sterile male post-release. Optimizing the irradiation step to achieve maximum sterility while keeping off-target somatic damage to a minimum can significantly improve male mating competitiveness. It is therefore worth examining various protocols that have been found to be effective in other insect species, such as dose fractionation. A fully sterilizing dose of 70 Gy was administered to Aedes aegypti males as one acute dose or fractionated into either two equal doses of 35 Gy, or one low dose of 10 Gy followed by a second dose of 60 Gy. The two doses were separated by either 1- or 2-day intervals. Longevity, flight ability, and mating competitiveness tests were performed to identify beneficial effects of the various treatments. Positive effects of fractionating dose were seen in terms of male longevity and mating competitiveness. Although applying split doses generally improved male quality parameters, the benefits may not outweigh the added labor in SIT programmes for the management of mosquito vectors.


Title: Fractionnement de la dose d'irradiation chez les moustiques Aedes aegypti adultes. Abstract: Équilibrer l'efficacité du processus et la qualité biologique des mâles adultes stériles est l'un des défis du succès de la technique des insectes stériles (TIS) contre les populations d'insectes nuisibles. Pour la TIS contre les moustiques, de nombreux facteurs de stress sont à prendre en compte lors de la production de mâles stériles qui nécessitent une haute qualité biologique pour rester compétitifs une fois relâchés au champ. Les pressions de l'élevage en masse, du triage par sexe, des traitements d'irradiation, de l'emballage, du transport et de la libération, y compris les procédures de manipulation pour chaque étape, s'ajoutent au budget de stress global du mâle stérile après la libération. L'optimisation de l'étape d'irradiation pour atteindre une stérilité maximale tout en minimisant les dommages somatiques hors cible peut améliorer considérablement la compétitivité de l'accouplement des mâles et il est donc important d'examiner divers protocoles qui se sont révélés efficaces chez d'autres espèces d'insectes, comme le fractionnement de dose. Une dose entièrement stérilisante de 70 Gy a été administrée aux mâles Aedes aegypti en une dose unique ou fractionnée en deux doses égales de 35 Gy, ou une faible dose de 10 Gy suivie d'une seconde dose de 60 Gy. Les deux doses étaient séparées par des intervalles de 1 ou 2 jours. Des tests de longévité, d'aptitude au vol et de compétitivité à l'accouplement ont été réalisés pour identifier les effets bénéfiques des différents traitements. Des effets positifs de la dose de fractionnement ont été observés en termes de longévité des mâles et de compétitivité à l'accouplement. Bien que l'application de doses fractionnées améliore généralement les paramètres de qualité des mâles, les avantages peuvent ne pas compenser le travail supplémentaire dans les programmes TIS pour la gestion des moustiques vecteurs.


Assuntos
Aedes , Animais , Masculino , Aedes/efeitos da radiação , Reprodução , Mosquitos Vetores , Insetos , Doses de Radiação , Comportamento Sexual Animal/efeitos da radiação , Controle de Mosquitos/métodos
2.
Malar J ; 21(1): 254, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064699

RESUMO

BACKGROUND: South Africa has set a mandate to eliminate local malaria transmission by 2023. In pursuit of this objective a Sterile Insect Technique programme targeting the main vector Anopheles arabiensis is currently under development. Significant progress has been made towards operationalizing the technology. However, one of the main limitations being faced is the absence of an efficient genetic sexing system. This study is an assessment of an An. arabiensis (AY-2) strain carrying the full Y chromosome from Anopheles gambiae, including a transgenic red fluorescent marker, being introgressed into a South African genetic background as a potential tool for a reliable sexing system. METHODS: Adult, virgin males from the An. arabiensis AY-2 strain were outcrossed to virgin females from the South African, Kwazulu-Natal An. arabiensis (KWAG strain) over three generations. Anopheles arabiensis AY-2 fluorescent males were sorted as first instar larvae (L1) using the Complex Object Parametric Analyzer and Sorter (COPAS) and later screened as pupae to verify the sex. Life history traits of the novel hybrid KWAG-AY2 strain were compared to the original fluorescent AY-2 strain, the South African wild-type KWAG strain and a standard laboratory An. arabiensis (Dongola reference strain). RESULTS: The genetic stability of the sex-linked fluorescent marker and the integrity and high level of sexing efficiency of the system were confirmed. No recombination events in respect to the fluorescent marker were detected over three rounds of introgression crosses. KWAG-AY2 had higher hatch rates and survival of L1 to pupae and L1 to adult than the founding strains. AY-2 showed faster development time of immature stages and larger adult body size, but lower larval survival rates. Adult KWAG males had significantly higher survival rates. There was no significant difference between the strains in fecundity and proportion of males. KWAG-AY2 males performed better than reference strains in flight ability tests. CONCLUSION: The life history traits of KWAG-AY2, its rearing efficiency under laboratory conditions, the preservation of the sex-linked fluorescence and perfect sexing efficiency after three rounds of introgression crosses, indicate that it has potential for mass rearing. The potential risks and benefits associated to the use of this strain within the Sterile Insect Technique programme in South Africa are discussed.


Assuntos
Anopheles , Infertilidade , Características de História de Vida , Animais , Anopheles/genética , Feminino , Genômica , Larva/genética , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Pupa , África do Sul
3.
Front Bioeng Biotechnol ; 10: 942654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172019

RESUMO

The developmental stage of the mosquito is one of the main factors that affect its response to ionizing radiation. Irradiation of adults has been reported to have beneficial effects. However, the main challenge is to immobilize and compact a large number of adult male mosquitoes for homogenous irradiation with minimal deleterious effects on their quality. The present study investigates the use of nitrogen in the irradiation of adult Aedes albopictus and Ae. aegypti. Irradiation in nitrogen (N2) and in air after being treated with nitrogen (PreN2) were compared with irradiation in air at gamma radiation doses of 0, 55, 70, 90, 110, and 125 Gy. In both species, approximately 0% egg hatch rate was observed following doses above 55 Gy in air versus 70 Gy in PreN2 and 90 Gy in N2. Males irradiated at a high mosquito density showed similar egg hatch rates as those irradiated at a low density. Nitrogen treatments showed beneficial effects on the longevity of irradiated males for a given dose, revealing the radioprotective effect of anoxia. However, irradiation in N2 or PreN2 slightly reduced the male flight ability. Nitrogen treatment was found to be a reliable method for adult mosquito immobilization. Overall, our results demonstrated that nitrogen may be useful in adult Aedes mass irradiation. The best option seems to be PreN2 since it reduces the immobilization duration and requires a lower dose than that required in the N2 environment to achieve full sterility but with similar effects on male quality. However, further studies are necessary to develop standardized procedures including containers, time and pressure for flushing with nitrogen, immobilization duration considering mosquito species, age, and density.

4.
Sci Rep ; 12(1): 6242, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422488

RESUMO

Reproductive sterility is the basis of the sterile insect technique (SIT) and essential for its success in the field. Numerous factors that influence dose-response in insects have been identified. However, historically the radiation dose administered has been considered a constant. Efforts aiming to standardize protocols for mosquito irradiation found that, despite carefully controlling many variable factors, there was still an unknown element responsible for differences in expected sterility levels of insects irradiated with the same dose and handling protocols. Thus, together with previous inconclusive investigations, the question arose whether dose really equals dose in terms of biological response, no matter the rate at which the dose is administered. Interestingly, the dose rate effects studied in human nuclear medicine indicated that dose rate could alter dose-response in mammalian cells. Here, we conducted experiments to better understand the interaction of dose and dose rate to assess the effects in irradiated mosquitoes. Our findings suggest that not only does dose rate alter irradiation-induced effects, but that the interaction is not linear and may change with dose. We speculate that the recombination of reactive oxygen species (ROS) in treatments with moderate to high dose rates might minimize indirect radiation-induced effects in mosquitoes and decrease sterility levels, unless dose along with its direct effects is increased. Together with further studies to identify an optimum match of dose and dose rate, these results could assist in the development of improved methods for the production of high-quality sterile mosquitoes to enhance the efficiency of SIT programs.


Assuntos
Infertilidade , Animais , Humanos , Insetos , Mamíferos , Pupa/efeitos da radiação , Doses de Radiação
5.
Parasit Vectors ; 13(1): 460, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907625

RESUMO

BACKGROUND: Mosquitoes are the deadliest animals in the world. Their ability to carry and spread diseases to humans causes millions of deaths every year. Due to the lack of efficient vaccines, the control of mosquito-borne diseases primarily relies on the management of the vector. Traditional control methods are insufficient to control mosquito populations. The sterile insect technique (SIT) is an additional control method that can be combined with other control tactics to suppress specific mosquito populations. The SIT requires the mass-rearing and release of sterile males with the aim to induce sterility in the wild female population. Samples collected from the environment for laboratory colonization, as well as the released males, should be free from mosquito-borne viruses (MBV). Therefore, efficient detection methods with defined detection limits for MBV are required. Although a one-step reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) method was developed to detect arboviruses in human and mosquito samples, its detection limit in mosquito samples has yet to be defined. METHODS: We evaluated the detection sensitivity of one step RT-qPCR for targeted arboviruses in large mosquito pools, using pools of non-infected mosquitoes of various sizes (165, 320 and 1600 mosquitoes) containing one infected mosquito body with defined virus titers of chikungunya virus (CHIKV), usutu virus (USUV), West Nile virus (WNV) and Zika virus (ZIKV). RESULTS: CHIK, USUV, ZIKV, and WNV virus were detected in all tested pools using the RT-qPCR assay. Moreover, in the largest mosquito pools (1600 mosquitoes), RT-qPCR was able to detect the targeted viruses using different total RNA quantities (10, 1 and 0.1 ng per reaction) as a template. Correlating the virus titer with the total RNA quantity allowed the prediction of the maximum number of mosquitoes per pool in which the RT-qPCR can theoretically detect the virus infection. CONCLUSIONS: Mosquito-borne viruses can be reliably detected by RT-qPCR assay in pools of mosquitoes exceeding 1000 specimens. This will represent an important step to expand pathogen-free colonies for mass-rearing sterile males for programmes that have a SIT component by reducing the time and the manpower needed to conduct this quality control process.


Assuntos
Arbovírus , Culicidae/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Arbovírus/genética , Arbovírus/isolamento & purificação , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Reservatórios de Doenças/virologia , Vetores de Doenças , Flavivirus/genética , Flavivirus/isolamento & purificação , Mosquitos Vetores/virologia , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/virologia , Viroses/transmissão , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação , Zika virus/genética , Zika virus/isolamento & purificação
6.
Parasit Vectors ; 13(1): 198, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303257

RESUMO

BACKGROUND: Radiation induced sterility is the basis of the Sterile Insect Technique, by which a target insect pest population is suppressed by releasing artificially reared sterile males of the pest species in overflooding numbers over a target site. In order for the sterile males to be of high biological quality, effective standard irradiation protocols are required. Following studies investigating the effects of mosquito pupae irradiation in water versus in air, there is a need to investigate the oxy-regulatory behavior of mosquito pupae in water to better understand the consequences of irradiation in hypoxic versus normoxic conditions. METHODS: Pupae of Aedes aegypti, Ae. albopictus, and Anopheles arabiensis were submerged in water inside air-tight 2 ml glass vials at a density of 100 pupae/ml and the dissolved oxygen (DO) levels in the water were measured and plotted over time. In addition, male pupae of Ae. aegypti (aged 40-44 h), Ae. albopictus (aged 40-44 h) and An. arabiensis (aged 20-24 h) were irradiated in a gammacell220 at increasing doses in either hypoxic (water with < 0.5% O2 content) or normoxic (in air) conditions. The males were then mated to virgin females and resulting eggs were checked for induced sterility. RESULTS: All three species depleted the water of DO to levels under 0.5% within 30 minutes, with An. arabiensis consuming oxygen the fastest at under 10 minutes. Following irradiation, the protective effect of hypoxia was observed across species and doses (P < 0.0001), increasing at higher doses. This effect was most pronounced in An. arabiensis. CONCLUSIONS: The consumption of dissolved oxygen by pupae submerged in water was significantly different between species, indicating that their oxy-regulatory capacity seems to have possibly evolved according to their preferred breeding site characteristics. This needs to be considered when sterilizing male mosquitoes at pupal stage in water. Depending on species, their DO consumption rates and their density, irradiation doses needed to achieve full sterility may vary significantly. Further assessments are required to ascertain optimal conditions in terms of ambient atmosphere during pupal irradiation to produce competitive sterile males, and temperature and density dependent effects are expected.


Assuntos
Aedes/efeitos da radiação , Anopheles/efeitos da radiação , Hipóxia , Pupa/efeitos da radiação , Esterilização/métodos , Animais , Feminino , Infertilidade Masculina , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos da radiação , Água/química
7.
Parasite ; 26: 75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31859620

RESUMO

For the sterile insect technique, and other related biological control methods where large numbers of the target mosquito are reared artificially, production efficiency is key for the economic viability of the technique. Rearing success begins with high quality eggs. Excess eggs are often stockpiled and stored for longer periods of time. Any pests that prey on these eggs are detrimental to stockpiles and need to be avoided. Psocids of the genus Liposcelis (Psocoptera, Liposcelididae) are common scavengers consuming various types of organic material that are distributed globally and thrive in warm damp environments, making insectaries ideal habitats. In this short report, we investigated the species that has been found scavenging stored mosquito eggs in our insectary and identified it to be Liposcelis bostrychophila Badonnel, 1931. Additional observations were made to determine whether these predators indeed feed on mosquito eggs, and to suggest simple, effective ways of avoiding infestation.


TITLE: Élevage de masse de moustiques : mais qui mange les œufs ? ABSTRACT: Pour la technique des insectes stériles et les autres méthodes de lutte biologique associées, dans lesquelles un grand nombre de moustiques cibles sont élevés artificiellement, l'efficacité de la production est essentielle pour la viabilité économique de la technique. Le succès de l'élevage commence par des œufs de bonne qualité. Les œufs excédentaires sont souvent stockés pendant de longues périodes. Tous les organismes nuisibles qui exploitent ces œufs nuisent à ces stocks et doivent être évités. Les psoques du genre Liposcelis (Psocoptera, Liposcelididae) sont des charognards répandus qui consomment diverses matières organiques, sont répartis dans le monde entier et prospèrent dans des environnements chauds et humides, ce qui rend les insectariums des habitats idéaux pour eux. Dans ce court rapport, nous avons étudié l'espèce qui mangeait des œufs de moustiques stockés dans notre insectarium et nous avons déterminé qu'il s'agissait de Liposcelis bostrychophila Badonnel, 1931. D'autres observations ont été faites pour déterminer si ces prédateurs se nourrissent effectivement des œufs de moustiques et suggérer des moyens simples et efficaces pour éviter l'infestation.


Assuntos
Aedes , Óvulo , Ftirápteros/fisiologia , Comportamento Predatório , Animais , Entomologia/métodos , Feminino , Controle de Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...