Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 150: 106436, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592450

RESUMO

There is a risk that residues of antibiotics and other antimicrobials in hospital and municipal wastewaters could select for resistant bacteria. Still, direct experimental evidence for selection is lacking. Here, we investigated if effluent from a large Swedish hospital, as well as influent and effluent from the connected municipal wastewater treatment plant (WWTP) select for antibiotic resistant Escherichia coli in three controlled experimental setups. Exposure of sterile-filtered hospital effluent to a planktonic mix of 149 different E. coli wastewater isolates showed a strong selection of multi-resistant strains. Accordingly, exposure to a complex wastewater community selected for strains resistant to several antibiotic classes. Exposing individual strains with variable resistance patterns revealed a rapid bactericidal effect of hospital effluent on susceptible, but not multi-resistant E. coli. No selection was observed after exposure to WWTP effluent, while exposure to WWTP influent indicated a small selective effect for ceftazidime and cefadroxil resistant strains, and only in the E. coli mix assay. An analysis of commonly used antibiotics and non-antibiotic pharmaceuticals in combination with growth and resistance pattern of individual E. coli isolates suggested a possible contribution of ciprofloxacin and ß-lactams to the selection by hospital effluent. However, more research is needed to clarify the contribution from different selective agents. While this study does not indicate selection by the studied WWTP effluent, there is some indications of selective effects by municipal influent on ß-lactam-resistant strains. Such effects may be more pronounced in countries with higher antibiotic use than Sweden. Despite the limited antibiotic use in Sweden, the hospital effluent strongly and consistently selected for multi-resistance, indicating widespread risks. Hence, there is an urgent need for further evaluation of risks for resistance selection in hospital sewers, as well as for strategies to remove selective agents and resistant bacteria.


Assuntos
Escherichia coli , Águas Residuárias , Antibacterianos/farmacologia , Hospitais , Suécia
2.
Environ Int ; 144: 106083, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890888

RESUMO

Antibiotic resistance presents a serious and still growing threat to human health. Environmental exposure levels required to select for resistance are unknown for most antibiotics. Here, we evaluated different experimental approaches and ways to interpret effect measures, in order to identify what concentration of trimethoprim that are likely to select for resistance in aquatic environments. When grown in complex biofilms, selection for resistant E. coli increased at 100 µg/L, whereas there was only a non-significant trend with regards to changes in taxonomic composition within the tested range (0-100 µg/L). Planktonic co-culturing of 149 different E. coli strains isolated from sewage again confirmed selection at 100 µg/L. Finally, pairwise competition experiments were performed with engineered E. coli strains carrying different trimethoprim resistance genes (dfr) and their sensitive counterparts. While strains with introduced resistance genes grew slower than the sensitive ones at 0 and 10 µg/L, a significant reduction in cost was found already at 10 µg/L. Defining lowest effect concentrations by comparing proportion of resistant strains to sensitive ones at the same time point, rather than to their initial ratios, will reflect the advantage a resistance factor can bring, while ignoring exposure-independent fitness costs. As costs are likely to be highly dependent on the specific environmental and genetic contexts, the former approach might be more suitable as a basis for defining exposure limits with the intention to prevent selection for resistance. Based on the present and other studies, we propose that 1 µg/L would be a reasonably protective exposure limit for trimethoprim in aquatic environments.


Assuntos
Escherichia coli , Resistência a Trimetoprima , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Humanos , Trimetoprima/toxicidade , Resistência a Trimetoprima/genética
3.
Environ Int ; 116: 255-268, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704804

RESUMO

There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 µg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 µg/L or higher. Only at 5-10 µg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 µg/L and the corresponding no observed effect concentration 0.1 µg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos/genética
4.
FEMS Microbiol Lett ; 363(19)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27609231

RESUMO

The contribution of antibiotic resistance originally selected for in the agricultural sector to resistance in human pathogens is not known exactly, but is unlikely to be negligible. It is estimated that 50% to 80% of all antibiotics used are applied in agriculture and the remainder for treating infections in humans. Since dosing regimens are less controlled in agriculture than in human health care, veterinary and environmental microbes are often exposed to sublethal levels of antibiotics. Exposure to sublethal drug concentrations must be considered a risk factor for de novo resistance, transfer of antimicrobial resistant (AMR) genes, and selection for already existing resistance. Resistant zoonotic agents and commensal strains carrying AMR genes reach the human population by a variety of routes, foodstuffs being only one of these. Based on the present knowledge, short treatments with the highest dose that does not cause unacceptable side-effects may be optimal for achieving therapeutic goals while minimizing development of resistance. Novel approaches such as combination or alternating therapy are promising, but need to be explored further before they can be implemented in daily practice.


Assuntos
Agricultura , Agroquímicos/análise , Agroquímicos/farmacologia , Antibacterianos/análise , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Animais , Antibacterianos/administração & dosagem , Cálculos da Dosagem de Medicamento , Cadeia Alimentar , Microbiologia de Alimentos , Transferência Genética Horizontal , Humanos , Simbiose , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...