Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 66: 101596, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100179

RESUMO

OBJECTIVE: Metabolomics as an approach to solve biological problems is exponentially increasing in use. Thus, this a pivotal time for the adoption of best practices. It is well known that disrupted tissue oxygen supply rapidly alters cellular energy charge. However, the speed and extent to which delayed mouse tissue freezing after dissection alters the broad metabolome is not well described. Furthermore, how tissue genotype may modulate such metabolomic drift and the degree to which traced 13C-isotopologue distributions may change have not been addressed. METHODS: By combined liquid chromatography (LC)- and gas chromatography (GC)-mass spectrometry (MS), we measured how levels of 255 mouse liver metabolites changed following 30-second, 1-minute, 3-minute, and 10-minute freezing delays. We then performed test-of-concept delay-to-freeze experiments evaluating broad metabolomic drift in mouse heart and skeletal muscle, differential metabolomic change between wildtype (WT) and mitochondrial pyruvate carrier (MPC) knockout mouse livers, and shifts in 13C-isotopologue abundances and enrichments traced from 13C-labled glucose into mouse liver. RESULTS: Our data demonstrate that delayed mouse tissue freezing after dissection leads to rapid hypoxia-driven remodeling of the broad metabolome, induction of both false-negative and false-positive between-genotype differences, and restructuring of 13C-isotopologue distributions. Notably, we show that increased purine nucleotide degradation products are an especially high dynamic range marker of delayed liver and heart freezing. CONCLUSIONS: Our findings provide a previously absent, systematic illustration of the extensive, multi-domain metabolomic changes occurring within the early minutes of delayed tissue freezing. They also provide a novel, detailed resource of mouse liver ex vivo, hypoxic metabolomic remodeling.


Assuntos
Metaboloma , Metabolômica , Animais , Camundongos , Metaboloma/fisiologia , Metabolômica/métodos , Hipóxia , Camundongos Knockout , Genótipo
2.
PLoS One ; 15(12): e0244540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378390

RESUMO

Despite dramatic improvements in outcomes arising from the introduction of targeted therapies and immunotherapies, metastatic melanoma is a highly resistant form of cancer with 5 year survival rates of <35%. Drug resistance is frequently reported to be associated with changes in oxidative metabolism that lead to malignancy that is non-responsive to current treatments. The current report demonstrates that triphenylphosphonium(TPP)-based lipophilic cations can be utilized to induce cytotoxicity in pre-clinical models of malignant melanoma by disrupting mitochondrial metabolism. In vitro experiments demonstrated that TPP-derivatives modified with aliphatic side chains accumulated in melanoma cell mitochondria; disrupted mitochondrial metabolism; led to increases in steady-state levels of reactive oxygen species; decreased total glutathione; increased the fraction of glutathione disulfide; and caused cell killing by a thiol-dependent process that could be rescued by N-acetylcysteine. Furthermore, TPP-derivative-induced melanoma toxicity was enhanced by glutathione depletion (using buthionine sulfoximine) as well as inhibition of thioredoxin reductase (using auranofin). In addition, there was a structure-activity relationship between the aliphatic side-chain length of TPP-derivatives (5-16 carbons), where longer carbon chains increased melanoma cell metabolic disruption and cell killing. In vivo bio-distribution experiments showed that intratumoral administration of a C14-TPP-derivative (12-carbon aliphatic chain), using a slow-release thermosensitive hydrogel as a delivery vehicle, localized the drug at the melanoma tumor site. There, it was observed to persist and decrease the growth rate of melanoma tumors. These results demonstrate that TPP-derivatives selectively induce thiol-dependent metabolic oxidative stress and cell killing in malignant melanoma and support the hypothesis that a hydrogel-based TPP-derivative delivery system could represent a therapeutic drug-delivery strategy for melanoma.


Assuntos
Auranofina/administração & dosagem , Butionina Sulfoximina/administração & dosagem , Melanoma/tratamento farmacológico , Mitocôndrias/metabolismo , Compostos Organofosforados/administração & dosagem , Animais , Auranofina/farmacologia , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Sinergismo Farmacológico , Feminino , Humanos , Hidrogéis/química , Melanoma/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...