Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903800

RESUMO

A broad range of inorganic nanoparticles (NPs) and their dissolved ions possess a possible toxicological risk for human health and the environment. Reliable and robust measurements of dissolution effects may be influenced by the sample matrix, which challenges the analytical method of choice. In this study, CuO NPs were investigated in several dissolution experiments. Two analytical techniques (dynamic light scattering (DLS) and inductively-coupled plasma mass spectrometry (ICP-MS)) were used to characterize NPs (size distribution curves) time-dependently in different complex matrices (e.g., artificial lung lining fluids and cell culture media). The advantages and challenges of each analytical approach are evaluated and discussed. Additionally, a direct-injection single particle (DI sp)ICP-MS technique for assessing the size distribution curve of the dissolved particles was developed and evaluated. The DI technique provides a sensitive response even at low concentrations without any dilution of the complex sample matrix. These experiments were further enhanced with an automated data evaluation procedure to objectively distinguish between ionic and NP events. With this approach, a fast and reproducible determination of inorganic NPs and ionic backgrounds can be achieved. This study can serve as guidance when choosing the optimal analytical method for NP characterization and for the determination of the origin of an adverse effect in NP toxicity.

2.
J Phys Chem Lett ; 14(6): 1485-1493, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36745035

RESUMO

Chrimson is a red-light absorbing channelrhodopsin useful for deep-tissue optogenetics applications. Here, we present the Chrimson reaction dynamics from femtoseconds to seconds, analyzed with target analysis methods to disentangle spectrally and temporally overlapping excited- and product-state dynamics. We found multiple phases ranging from ≈100 fs to ≈20 ps in the excited-state decay, where spectral features overlapping with stimulated emission components were assigned to early dynamics of K-like species on a 10 ps time scale. Selective excitation at the maximum or the blue edge of the absorption spectrum resulted in spectrally distinct but kinetically similar excited-state and product-state species, which gradually became indistinguishable on the µs to 100 µs time scales. Hence, by removing specific protein conformations within an inhomogeneously broadened ensemble, we resolved slow protein backbone and amino acid side-chain motions in the dark that underlie inhomogeneous broadening, demonstrating that the latter represents a dynamic interconversion between protein substates.


Assuntos
Luz , Channelrhodopsins , Cinética , Movimento (Física)
3.
Part Fibre Toxicol ; 19(1): 37, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578293

RESUMO

BACKGROUND: TiO2 nanomaterials (NMs) are present in a variety of food and personal hygiene products, and consumers are exposed daily to these NMs through oral exposition. While the bulk of ingested TiO2 NMs are eliminated rapidly in stool, a fraction is able to cross the intestinal epithelial barrier and enter systemic circulation from where NMs can be distributed to tissues, primarily liver and spleen. Daily exposure to TiO2 NMs, in combination with a slow rate of elimination from tissues, results in their accumulation within different tissues. Considerable evidence suggests that following oral exposure to TiO2 NMs, the presence of NMs in tissues is associated with a number of adverse effects, both in intestine and liver. Although numerous studies have been performed in vitro investigating the acute effects of TiO2 NMs in intestinal and hepatic cell models, considerably less is known about the effect of repeated exposure on these models. In this study, we investigated the cytotoxic effects of repeated exposure of relevant models of intestine and liver to two TiO2 NMs differing in hydrophobicity for 24 h, 1 week and 2 weeks at concentrations ranging from 0.3 to 80 µg/cm2. To study the persistence of these two NMs in cells, we included a 1-week recovery period following 24 h and 1-week treatments. Cellular uptake by TEM and ToF-SIMS analyses, as well as the viability and pro-inflammatory response were evaluated. Changes in the membrane composition in Caco-2 and HepaRG cells treated with TiO2 NMs for up to 2 weeks were also studied. RESULTS: Despite the uptake of NM-103 and NM-104 in cells, no significant cytotoxic effects were observed in either Caco-2 or HepaRG cells treated for up to 2 weeks at NM concentrations up to 80 µg/cm2. In addition, no significant effects on IL-8 secretion were observed. However, significant changes in membrane composition were observed in both cell lines. Interestingly, while most of these phospholipid modifications were reversed following a 1-week recovery, others were not affected by the recovery period. CONCLUSION: These findings indicate that although no clear effects on cytotoxicity were observed following repeated exposure of differentiated Caco-2 and HepaRG cells to TiO2 NMs, subtle effects on membrane composition could induce potential adverse effects in the long-term.


Assuntos
Nanoestruturas , Titânio , Células CACO-2 , Hepatócitos , Humanos , Intestinos , Fígado , Nanoestruturas/toxicidade , Titânio/toxicidade
4.
Nanoscale ; 14(12): 4690-4704, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262538

RESUMO

We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.

5.
Toxicol In Vitro ; 78: 105257, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34688838

RESUMO

Exposure of consumers to aluminum-containing nanomaterials (Al NMs) is an area of concern for public health agencies. As the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare, the present study investigated their in vitro genotoxic potential in intestinal and liver cell models, and compared with the ionic form AlCl3. Intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 µg/cm2). Cytotoxicity, oxidative stress and apoptosis were measured using High Content Analysis. Genotoxicity was investigated through γH2AX labelling, the alkaline comet and micronucleus assays. Moreover, oxidative DNA damage and carcinogenic properties were assessed using the Fpg-modified comet assay and the cell transforming assay in Bhas 42 cells respectively. The three forms of Al did not induce chromosomal damage. However, although no production of oxidative stress was detected, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells but not likely related to ion release in the cell media. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, likely due to interference with these NMs. No genotoxic effects were observed with AlCl3. None of the Al compounds induced cytotoxicity, apoptosis, γH2AX or cell transformation.


Assuntos
Alumínio/toxicidade , Dano ao DNA , Nanopartículas Metálicas/toxicidade , Cloreto de Alumínio/toxicidade , Óxido de Alumínio/toxicidade , Células CACO-2 , Linhagem Celular , Ensaio Cometa , Hepatócitos/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Testes para Micronúcleos , Estresse Oxidativo
6.
Curr Med Chem ; 29(2): 358-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33618638

RESUMO

Compared to the classical chemicals, nanoparticles (NPs) exhibit unique properties, which lead to challenges in sample preparation and analysis. Fractionation techniques and, in particular, hollow fiber flow field flow fractionation (HF5) have recently become popular in the characterization and quantification of nanomaterials, because of their fine fractionation capability in the nanoscale-range. When dealing with NPs, a great drawback during fractionation is the loss of particles in the fractionation devices, tubing and connectors. There is a need for studies to systematically explore and assess the quality of the fractionation process. A combination of two complementary mass-based setups was used to determine particle loss in HF5. Inductively coupled plasma mass spectrometry (ICP-MS) enabled the estimation of recovery rates for NPs after HF5 separation. Reciprocally, laser ablation ICP-MS (LA-ICP-MS) permitted the evaluation of particles retained on the hollow fiber. 15 nm Au-NPs in different concentrations were evaluated in this study and showed a recovery level for Au-NPs of 50 - 65% based on the applied concentrations after a complete HF5 separation run. Detection of sample deposition on the hollow fiber by LA-ICP-MS indicated a sample loss of about 8%. These findings are important for experiments relying on fractionation of low concentrated nanoparticulate samples.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Humanos , Espectrometria de Massas , Análise Espectral
7.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202329

RESUMO

The interactions between pharmaceuticals and nanomaterials and its potentially resulting toxicological effects in living systems are only insufficiently investigated. In this study, two model compounds, acetaminophen, a pharmaceutical, and cerium dioxide, a manufactured nanomaterial, were investigated in combination and individually. Upon inhalation, cerium dioxide nanomaterials were shown to systemically translocate into other organs, such as the liver. Therefore we picked the human liver cell line HuH-7 cells as an in vitro system to investigate liver toxicity. Possible synergistic or antagonistic metabolic changes after co-exposure scenarios were investigated. Toxicological data of the water soluble tetrazolium (WST-1) assay for cell proliferation and genotoxicity assessment using the Comet assay were combined with an untargeted as well as a targeted lipidomics approach. We found an attenuated cytotoxicity and an altered metabolic profile in co-exposure experiments with cerium dioxide, indicating an interaction of both compounds at these endpoints. Single exposure against cerium dioxide showed a genotoxic effect in the Comet assay. Conversely, acetaminophen exhibited no genotoxic effect. Comet assay data do not indicate an enhancement of genotoxicity after co-exposure. The results obtained in this study highlight the advantage of investigating co-exposure scenarios, especially for bioactive substances.


Assuntos
Acetaminofen/efeitos adversos , Cério/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nanopartículas , Acetaminofen/administração & dosagem , Transporte Biológico , Linhagem Celular Tumoral , Cério/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Metaboloma , Metabolômica/métodos , Nanopartículas/química , Tamanho da Partícula , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Biophys J ; 119(3): 705-716, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32697975

RESUMO

The function of photoreceptors relies on efficient transfer of absorbed light energy from the chromophore to the protein to drive conformational changes that ultimately generate an output signal. In retinal-binding proteins, mainly two mechanisms exist to store the photon energy after photoisomerization: 1) conformational distortion of the prosthetic group retinal, and 2) charge separation between the protonated retinal Schiff base (RSBH+) and its counterion complex. Accordingly, energy transfer to the protein is achieved by chromophore relaxation and/or reduction of the charge separation in the RSBH+-counterion complex. Combining FTIR and UV-Vis spectroscopy along with molecular dynamics simulations, we show here for the widely used, red-activatable Volvox carteri channelrhodopsin-1 derivate ReaChR that energy storage and transfer into the protein depends on the protonation state of glutamic acid E163 (Ci1), one of the counterions of the RSBH+. Ci1 retains a pKa of 7.6 so that both its protonated and deprotonated forms equilibrate at physiological conditions. Protonation of Ci1 leads to a rigid hydrogen-bonding network in the active-site region. This stabilizes the distorted conformation of the retinal after photoactivation and decelerates energy transfer into the protein by impairing the release of the strain energy. In contrast, with deprotonated Ci1 or removal of the Ci1 glutamate side chain, the hydrogen-bonded system is less rigid, and energy transfer by chromophore relaxation is accelerated. Based on the hydrogen out-of-plane (HOOP) band decay kinetics, we determined the activation energy for these processes in dependence of the Ci1 protonation state.


Assuntos
Simulação de Dinâmica Molecular , Bases de Schiff , Channelrhodopsins , Transferência de Energia , Ligação de Hidrogênio
9.
Nanotoxicology ; 14(6): 807-826, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449868

RESUMO

Nanomaterials (NMs) can be produced in plenty of variants posing several challenges for NM hazard and risk assessment. Metabolomic profiling of NM-treated cells and tissues allows for insights into underlying Mode-of-Action (MoA) and offers several advantages in this context. It supports the description of Adverse Outcome Pathways (AOPs) and, therefore, tailored AOP-based hazard testing strategies. Moreover, it bears great potential for biomarker discovery supporting toxicity prediction. Here, we applied metabolomics profiling to cells treated with four well-selected SiO2 variants, differing in structure, size and surface charge. TiO2 NM-105 served as a benchmark. Responses were studied in vitro in rat lung epithelial cells (RLE-6TN) and alveolar macrophages (NR8383) and compared to in vivo responses in rat lung tissues obtained from in vivo instillation and short-term inhalation studies (STIS). Time- and concentration-dependent changes were observed in both in vitro models but with cell-type specific responses. Overall, the levels of lipids and biogenic amines (BAs) tended to increase in epithelial cells but decreased in macrophages. Many identified metabolites like Met-SO, hydroxy-Pro and spermidine were related to oxidative stress, indicating that oxidative stress contributes to the MoA for the selected NMs. Several biomarker candidates such as Asp, Asn, Ser, Pro, spermidine, putrescine and LysoPCaC16:1 were identified in vitro and verified in vivo. In this study, we successfully applied a metabolomics workflow for in vitro and in vivo samples, which proved to be well suited to identify potential biomarkers, to gain insights into NM structure-activity relationship and into the underlying MoA.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Animais , Biomarcadores/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Metabolômica , Nanoestruturas/química , Tamanho da Partícula , Ratos Wistar , Dióxido de Silício/química
10.
Materials (Basel) ; 13(6)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235788

RESUMO

Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers.

11.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074956

RESUMO

Aluminum (Al) is extensively used for the production of different consumer products, agents, as well as pharmaceuticals. Studies that demonstrate neurotoxicity and a possible link to Alzheimer's disease trigger concern about potential health risks due to high Al intake. Al in cosmetic products raises the question whether a possible interaction between Al and retinol (vitamin A) and cholecalciferol (vitamin D3) metabolism might exist. Understanding the uptake mechanisms of ionic or elemental Al and Al nanomaterials (Al NMs) in combination with bioactive substances are important for the assessment of possible health risk associated. Therefore, we studied the uptake and distribution of Al oxide (Al2O3) and metallic Al0 NMs in the human keratinocyte cell line HaCaT. Possible alterations of the metabolic pattern upon application of the two Al species together with vitamin A or D3 were investigated. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify the cellular uptake of Al NMs.


Assuntos
Óxido de Alumínio/análise , Alumínio/análise , Colecalciferol/farmacologia , Nanoestruturas/química , Vitamina A/farmacologia , Alumínio/química , Alumínio/metabolismo , Óxido de Alumínio/química , Óxido de Alumínio/metabolismo , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Espectrometria de Massa de Íon Secundário
12.
Sci Rep ; 10(1): 2698, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060369

RESUMO

The knowledge about a potential in vivo uptake and subsequent toxicological effects of aluminum (Al), especially in the nanoparticulate form, is still limited. This paper focuses on a three day oral gavage study with three different Al species in Sprague Dawley rats. The Al amount was investigated in major organs in order to determine the oral bioavailability and distribution. Al-containing nanoparticles (NMs composed of Al0 and aluminum oxide (Al2O3)) were administered at three different concentrations and soluble aluminum chloride (AlCl3·6H2O) was used as a reference control at one concentration. A microwave assisted acid digestion approach followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was developed to analyse the Al burden of individual organs. Special attention was paid on how the sample matrix affected the calibration procedure. After 3 days exposure, AlCl3·6H2O treated animals showed high Al levels in liver and intestine, while upon treatment with Al0 NMs significant amounts of Al were detected only in the latter. In contrast, following Al2O3 NMs treatment, Al was detected in all investigated organs with particular high concentrations in the spleen. A rapid absorption and systemic distribution of all three Al forms tested were found after 3-day oral exposure. The identified differences between Al0 and Al2O3 NMs point out that both, particle shape and surface composition could be key factors for Al biodistribution and accumulation.


Assuntos
Alumínio/farmacologia , Disponibilidade Biológica , Nanoestruturas/química , Distribuição Tecidual/efeitos dos fármacos , Administração Oral , Alumínio/química , Cloreto de Alumínio/química , Cloreto de Alumínio/farmacologia , Óxido de Alumínio/química , Óxido de Alumínio/farmacologia , Animais , Humanos , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos
13.
Biochemistry ; 58(9): 1275-1286, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30702875

RESUMO

In recent years, gating and transient ion-pathway formation in the light-gated channelrhodopsins (ChRs) have been intensively studied. Despite these efforts, a profound understanding of the mechanistic details is still lacking. To track structural changes concomitant with the formation and subsequent collapse of the ion-conducting pore, we site-specifically introduced the artificial polarity-sensing probe p-azido-l-phenylalanine (azF) into several ChRs by amber stop codon suppression. The frequently used optogenetic actuator ReaChR (red-activatable ChR) exhibited the best expression properties of the wild type and the azF mutants. By exploiting the unique infrared spectral absorption of azF [νas(N3) ∼ 2100 cm-1] and its sensitivity to polarity changes, we monitored hydration changes at various sites of the pore region and the inner gate by stationary and time-resolved infrared spectroscopy. Our data imply that channel closure coincides with a dehydration event occurring between the interface of the central and the inner gate. In contrast, the extracellular ion pathway seems to be hydrated in the open and closed states to similar extents. Mutagenesis of sites in the inner gate suggests that it acts as an intracellular entry funnel, whose architecture and composition modulate water influx and efflux within the channel pore. Our results highlight the potential of genetic code expansion technology combined with biophysical methods to investigate channel gating, particularly hydration dynamics at specific sites, with a so far unprecedented spatial resolution.


Assuntos
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Azidas/química , Channelrhodopsins/genética , Códon de Terminação , Células HEK293 , Humanos , Sondas Moleculares/química , Mutagênese Sítio-Dirigida , Fenilalanina/análogos & derivados , Fenilalanina/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Nanotoxicology ; 12(9): 992-1013, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30317887

RESUMO

Aluminum (Al) is one of the most common elements in the earth crust and increasingly used in food, consumer products and packaging. Its hazard potential for humans is still not completely understood. Besides the metallic form, Al also exists as mineral, including the insoluble oxide, and in soluble ionic forms. Representatives of these three species, namely a metallic and an oxidic species of Al-containing nanoparticles and soluble aluminum chloride, were applied to human intestinal cell lines as models for the intestinal barrier. We characterized physicochemical particle parameters, protein corona composition, ion release and cellular uptake. Different in vitro assays were performed to determine potential effects and molecular modes of action related to the individual chemical species. For a deeper insight into signaling processes, microarray transcriptome analyses followed by bioinformatic data analysis were employed. The particulate Al species showed different solubility in biological media. Metallic Al nanoparticles released more ions than Al2O3 nanoparticles, while AlCl3 showed a mixture of dissolved and agglomerated particulate entities in biological media. The protein corona composition differed between both nanoparticle species. Cellular uptake, investigated in transwell experiments, occurred predominantly in particulate form, whereas ionic Al was not taken up by intestinal cell lines. Transcellular transport was not observed. None of the Al species showed cytotoxic effects up to 200 µg Al/mL. The transcriptome analysis indicated mainly effects on oxidative stress pathways, xenobiotic metabolism and metal homeostasis. We have shown for the first time that intestinal cellular uptake of Al occurs preferably in the particle form, while toxicological effects appear to be ion-related.


Assuntos
Alumínio/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Coroa de Proteína/metabolismo , Transcriptoma/efeitos dos fármacos , Alumínio/química , Alumínio/metabolismo , Apoptose/efeitos dos fármacos , Transporte Biológico , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Propriedades de Superfície
15.
Phys Chem Chem Phys ; 19(45): 30402-30409, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29125160

RESUMO

Anion channelrhodopsins (ACRs) are of great interest due to their ability to inhibit electrical signaling in optogenetic experiments. The photochemistry of ACRs is currently poorly understood and an improved understanding would be beneficial for rational design of ACRs with modified properties. Activation/deactivation of ACRs involves a series of photoreactions ranging from femtoseconds to seconds, thus real-time observation is essential to comprehend the full complexity of the photochemical processes. Here we investigate the photocycle of an ACR from Proteomonas sulcata (PsACR1), which is valuable for optogenetic applications due to the red-shifted absorption and action spectra compared to the prototype ACRs from Guillardia theta: GtACR1 and GtACR2, and the fast channel closing properties. From femto-to-submillisecond transient absorption spectroscopy, flash photolysis, and point mutations of acidic residues near the retinal Schiff base (RSB), E64, and D230, we found that the photoisomerization occurs in ∼500 fs independent of the protonation state of E64. Notably, E64 is involved in the rearrangement of the hydrogen-bond network near the RSB after photoisomerization. Furthermore, we suggest that E64 works as a primary proton acceptor during deprotonation of the RSB as has been proposed for GtACR1. Our findings allow for a deeper understanding of the photochemistry on the activation/deactivation of ACRs.

16.
Langmuir ; 33(40): 10726-10735, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28903564

RESUMO

Aluminum has gathered toxicological attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum-containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the single-particle mode were employed to characterize two aluminum-containing nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments.

17.
J Biol Chem ; 292(34): 14205-14216, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28659342

RESUMO

Channelrhodopsins (ChRs) are light-gated ion channels widely used for activating selected cells in large cellular networks. ChR variants with a red-shifted absorption maximum, such as the modified Volvox carteri ChR1 red-activatable channelrhodopsin ("ReaChR," λmax = 527 nm), are of particular interest because longer wavelengths allow optical excitation of cells in deeper layers of organic tissue. In all ChRs investigated so far, proton transfer reactions and hydrogen bond changes are crucial for the formation of the ion-conducting pore and the selectivity for protons versus cations, such as Na+, K+, and Ca2+ (1). By using a combination of electrophysiological measurements and UV-visible and FTIR spectroscopy, we characterized the proton transfer events in the photocycle of ReaChR and describe their relevance for its function. 1) The central gate residue Glu130 (Glu90 in Chlamydomonas reinhardtii (Cr) ChR2) (i) undergoes a hydrogen bond change in D → K transition and (ii) deprotonates in K → M transition. Its negative charge in the open state is decisive for proton selectivity. 2) The counter-ion Asp293 (Asp253 in CrChR2) receives the retinal Schiff base proton during M-state formation. Starting from M, a photocycle branching occurs involving (i) a direct M → D transition and (ii) formation of late photointermediates N and O. 3) The DC pair residue Asp196 (Asp156 in CrChR2) deprotonates in N → O transition. Interestingly, the D196N mutation increases 15-syn-retinal at the expense of 15-anti, which is the predominant isomer in the wild type, and abolishes the peak current in electrophysiological measurements. This suggests that the peak current is formed by 15-anti species, whereas 15-syn species contribute only to the stationary current.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorófitas/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Rodopsina/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Substituição de Aminoácidos , Domínio Catalítico/efeitos da radiação , Chlamydomonas reinhardtii/efeitos da radiação , Clorófitas/efeitos da radiação , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Ligação de Hidrogênio/efeitos da radiação , Luz , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica/efeitos da radiação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodopsina/química , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Arch Toxicol ; 91(12): 3991-4007, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28643002

RESUMO

Inhalation is considered a critical uptake route for NMs, demanding for sound toxicity testing using relevant test systems. This study investigates cytotoxicity and genotoxicity in EpiAirway™ 3D human bronchial models using 16 well-characterized NMs, including surface-functionalized 15 nm SiO2 (4 variants), 10 nm ZrO2 (4), and nanosilver (3), ZnO NM-110, TiO2 NM-105, BaSO4 NM-220, and two AlOOH NMs. Cytotoxicity was assessed by LDH and ATP assays and genotoxicity by the alkaline comet assay. For 9 NMs, uptake was investigated using inductively coupled plasma-mass spectrometry (ICP-MS). Most NMs were neither cytotoxic nor genotoxic in vitro. ZnO displayed a dose-dependent genotoxicity between 10 and 25 µg/cm2. Ag.50.citrate was genotoxic at 50 µg/cm2. A marginal but still significant genotoxic response was observed for SiO2.unmodified, SiO2.phosphate and ZrO2.TODS at 50 µg/cm2. For all NMs for which uptake in the 3D models could be assessed, the amount taken up was below 5% of the applied mass doses and was furthermore dose dependent. For in vivo comparison, published in vivo genotoxicity data were used and in addition, at the beginning of this study, two NMs were randomly selected for short-term (5-day) rat inhalation studies with subsequent comet and micronucleus assays in lung and bone marrow cells, respectively, i.e., ZrO2.acrylate and SiO2.amino. Both substances were not genotoxic neither in vivo nor in vitro. EpiAirway™ 3D models appear useful for NM in vitro testing. Using 16 different NMs, this study confirms that genotoxicity is mainly determined by chemical composition of the core material.


Assuntos
Brônquios/efeitos dos fármacos , Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Prata/toxicidade , Zircônio/toxicidade , Trifosfato de Adenosina/metabolismo , Administração por Inalação , Animais , Brônquios/citologia , Técnicas de Cultura de Células , Ensaio Cometa , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Testes para Micronúcleos , Testes de Mutagenicidade/métodos , Nanoestruturas/química , Ratos Wistar , Dióxido de Silício/química
19.
Biophys J ; 112(6): 1166-1175, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355544

RESUMO

Channelrhodopsins (ChRs) are light-activated ion channels widely employed for photostimulation of excitable cells. This study focuses on ReaChR, a chimeric ChR variant with optimal properties for optogenetic applications. We combined electrophysiological recordings with infrared and UV-visible spectroscopic measurements to investigate photocurrents and photochemical properties of ReaChR. Our data imply that ReaChR is green-light activated (λmax = 532 nm) with a non-rhodopsin-like action spectrum peaking at 610 nm for stationary photocurrents. This unusual spectral feature is associated with photoconversion of a previously unknown light-sensitive, blue-shifted photocycle intermediate L (λmax = 495 nm), which is accumulated under continuous illumination. To explain the complex photochemical reactions, we propose a symmetrical two-cycle-model based on the two C15=N isomers of the retinal cofactor with either syn- or anti-configuration, each comprising six consecutive states D, K, L, M, N, and O. Ion conduction involves two states per cycle, the late M- (M2) with a deprotonated retinal Schiff base and the consecutive green-absorbing N-state that both equilibrate via reversible reprotonation. In our model, a fraction of the deprotonated M-intermediate of the anti-cycle may be photoconverted-as the L-state-back to its inherent dark state, or to its M-state pendant (M') of the syn-cycle. The latter reaction pathway requires a C13=C14, C15=N double-isomerization of the retinal chromophore, whereas the intracircular photoconversion of M back to D involves only one C13=C14 double-bond isomerization.


Assuntos
Absorção de Radiação , Processos Fotoquímicos , Rodopsina/química , Rodopsina/metabolismo , Cor , Células HEK293 , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
Schizophr Res Cogn ; 4: 24-31, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27774411

RESUMO

Fast mapping (FM), a process that promotes the expeditious incidental learning of information, is thought to support rapid vocabulary acquisition in young children through extra-medial temporal lobe (MTL) regions. A recent study suggested that patients with MTL damage resulting in profound amnesia were able to learn novel word-image associations using an FM paradigm. The present study investigated whether FM would be an effective strategy to promote learning for individuals with schizophrenia, a severe mental illness associated with compromised MTL functionality. Twenty-five patients with schizophrenia and 27 healthy control subjects completed trials of incidental FM encoding (experimental condition) and explicit encoding (EE, control condition) over the course of three visits spaced one week (± 2 days) apart. All participants were evaluated for recognition 10 minutes after each encoding condition was presented, and again one week (± 2 days) later. Results indicate that both groups performed better on the EE recognition trials when compared to FM (p's < 0.05). For the FM recognition trials, both groups performed similarly. However, participants with schizophrenia performed significantly worse on the EE recognition trials than healthy control participants (p's < 0.05). While participants with schizophrenia did not perform significantly worse when assessed for FM recognition, these results do not provide enough evidence to suggest that FM facilitates learning to a greater extent in schizophrenia when compared to EE. Whether FM may benefit a subgroup of patients with schizophrenia remains a focus of further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...