Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Insect Sci ; 47: 31-37, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33705976

RESUMO

The Malpighian (renal) tubule is capable of transporting fluid at remarkable rates. This review will focus on recent insights into the mechanisms by which these high rates are achieved and controlled, with particular reference to the tubules of Drosophila melanogaster, in which the combination of physiology and genetics has led to particularly rapid progress. Like many vertebrate epithelia, the Drosophila tubule has specialized cell types, with active cation transport confined to a large, metabolically active principal cell; whereas the smaller intercalated stellate cell controls chloride and water shunts to achieve net fluid secretion. Recently, the genes underlying many of these processes have been identified, functionally validated and localized within the tubule. The imminent arrival of new types of post-genomic data (notably single cell sequencing) will herald an exciting era of new discovery.


Assuntos
Proteínas de Drosophila , Túbulos de Malpighi , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Transporte de Íons , Água/metabolismo
2.
J Cell Sci ; 125(Pt 11): 2721-31, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22344253

RESUMO

Rho GTPases are regulated in complex spatiotemporal patterns that might be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialisation of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the orthologue of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localise differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck, but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localisation is largely dependent on Ack1, a SEL1-domain-containing protein; Tus1 function and localisation is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Redes Reguladoras de Genes/genética , Mutação/genética , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo
3.
Eukaryot Cell ; 6(2): 262-70, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17172436

RESUMO

Pumilio family (PUF) proteins affect specific genes by binding to, and inhibiting the translation or stability of, their transcripts. The PUF domain is required and sufficient for this function. One Saccharomyces cerevisiae PUF protein, Mpt5p (also called Puf5p or Uth4p), promotes stress tolerance and replicative life span (the maximum number of doublings a mother cell can undergo before entering into senescence) by an unknown mechanism thought to partly overlap with, but to be independent of, the cell wall integrity (CWI) pathway. Here, we found that mpt5Delta mutants also display a short chronological life span (the time cells stay alive in saturated cultures in synthetic medium), a defect that is suppressed by activation of CWI signaling. We found that Mpt5p is an upstream activator of the CWI pathway: mpt5Delta mutants display the appropriate phenotypes and genetic interactions, display low basal activity of the pathway, and are defective in activation of the pathway upon thermal stress. A set of mRNAs that specifically bind to Mpt5p was recently reported. One such putative target, LRG1, encodes a GTPase-activating protein for Rho1p that directly links Mpt5p to CWI signaling: Lrg1p inhibits CWI signaling, LRG1 mRNA contains a consensus Mpt5p-binding site in its putative 3' untranslated region, loss of Lrg1p suppresses the temperature sensitivity and CWI signaling defects of mpt5Delta mutants, and LRG1 mRNA abundance is inhibited by Mpt5p. We conclude that Mpt5p is required for normal replicative and chronological life spans and that the CWI pathway is a key and direct downstream target of this PUF protein.


Assuntos
Adaptação Fisiológica , Proteínas de Ciclo Celular/metabolismo , Parede Celular/metabolismo , Longevidade/fisiologia , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase , Regulação Fúngica da Expressão Gênica , Proteínas de Ligação a RNA , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
4.
Curr Biol ; 12(7): 588-93, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11937029

RESUMO

Protein kinase C, encoded by PKC1, regulates construction of the cell surface in vegetatively growing yeast cells. Pkc1 in part acts by regulating Mpk1, a MAP kinase. Mutants lacking Bck1, a component of the MAP kinase branch of the pathway, fail to respond normally to nitrogen starvation, which causes entry into quiescence. Given that the Tor1 and Tor2 proteins are key inhibitors of entry into quiescence, the Pkc1 pathway may regulate these proteins. We find that pkc1Delta and mpk1Delta mutants rapidly die by cell lysis upon carbon or nitrogen starvation. The Pkc1 pathway does not regulate the TOR proteins: transcriptional changes dependent on inhibition of the TORs occur normally in pkc1Delta and mpk1Delta mutants when starved for nitrogen; pkc1Delta and mpk1Delta mutants die rapidly upon treatment with rapamycin, an inhibitor of the TORs. We find that Mpk1 is transiently activated by rapamycin treatment via a novel mechanism. Finally, we find that rapamycin treatment or nitrogen starvation induces resistance to the cell wall-digesting enzyme zymolyase by a Pkc1-dependent mechanism. Thus, the Pkc1 pathway is not a nutrient sensor but acts downstream of TOR inhibition to maintain cell integrity in quiescence.


Assuntos
Sistemas de Transporte de Aminoácidos , Proteínas de Transporte de Cátions , Proteínas Fúngicas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína Quinase C/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas Fúngicas/genética , Proteínas de Membrana/metabolismo , Mutagênese , Proteína Quinase C/genética , Proteínas Quinases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...