Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38747629

RESUMO

Ultrathin two-dimensional silica films have been suggested as highly defined conductive models for fundamental studies on silica-supported catalyst particles. Key requirements in this context are closed silica films that isolate the gas phase from the underlying metal substrate and stability under reaction conditions. Here, we present silica bilayer films grown on Pt(111) and Rh(111) and characterize them by scanning tunneling microscopy and X-ray photoelectron spectroscopy. We provide the first report of silica bilayer films on Rh(111) and have further successfully prepared fully closed films on Pt(111). Interestingly, surface and interface silicide phases play a decisive role in both cases: On platinum, closed films can be stabilized only when silicon is deposited in excess, which results in an interfacial silicide or silicate layer. We show that these silica films can also be grown directly from a surface silicide phase. In the case of rhodium, the silica phase is less stable and can be reduced to a silicide in reductive environments. Though similar in appearance to the "silicene" phases that have been controversially discussed on Ag(111), we conclude that an interpretation of the phase as a surface silicide is more consistent with our data. Finally, we show that the silica film on platinum is stable in 0.8 mbar CO but unstable at elevated temperatures. We thus conclude that these systems are only suitable as model catalyst supports to a limited extent.

2.
J Phys Chem Lett ; 14(13): 3258-3265, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36976170

RESUMO

The (111) facet of magnetite (Fe3O4) has been studied extensively by experimental and theoretical methods, but controversy remains regarding the structure of its low-energy surface terminations. Using density functional theory (DFT) computations, we demonstrate three reconstructions that are more favorable than the accepted Feoct2 termination under reducing conditions. All three structures change the coordination of iron in the kagome Feoct1 layer to be tetrahedral. With atomically resolved microscopy techniques, we show that the termination that coexists with the Fetet1 termination consists of tetrahedral iron capped by 3-fold coordinated oxygen atoms. This structure explains the inert nature of the reduced patches.

3.
Chem Rev ; 122(18): 14911-14939, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36070397

RESUMO

The field of single-atom catalysis (SAC) has expanded greatly in recent years. While there has been much success developing new synthesis methods, a fundamental disconnect exists between most experiments and the theoretical computations used to model them. The real catalysts are based on powder supports, which inevitably contain a multitude of different facets, different surface sites, defects, hydroxyl groups, and other contaminants due to the environment. This makes it extremely difficult to determine the structure of the active SAC site using current techniques. To be tractable, computations aimed at modeling SAC utilize periodic boundary conditions and low-index facets of an idealized support. Thus, the reaction barriers and mechanisms determined computationally represent, at best, a plausibility argument, and there is a strong chance that some critical aspect is omitted. One way to better understand what is plausible is by experimental modeling, i.e., comparing the results of computations to experiments based on precisely defined single-crystalline supports prepared in an ultrahigh-vacuum (UHV) environment. In this review, we report the status of the surface-science literature as it pertains to SAC. We focus on experimental work on supports where the site of the metal atom are unambiguously determined from experiment, in particular, the surfaces of rutile and anatase TiO2, the iron oxides Fe2O3 and Fe3O4, as well as CeO2 and MgO. Much of this work is based on scanning probe microscopy in conjunction with spectroscopy, and we highlight the remarkably few studies in which metal atoms are stable on low-index surfaces of typical supports. In the Perspective section, we discuss the possibility for expanding such studies into other relevant supports.

4.
Sci Adv ; 8(13): eabn4580, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35363523

RESUMO

Heterogeneous catalysts based on subnanometer metal clusters often exhibit strongly size-dependent properties, and the addition or removal of a single atom can make all the difference. Identifying the most active species and deciphering the reaction mechanism is extremely difficult, however, because it is often not clear how the catalyst evolves in operando. Here, we use a combination of atomically resolved scanning probe microscopies, spectroscopic techniques, and density functional theory (DFT)-based calculations to study CO oxidation by a model Pt/Fe3O4(001) "single-atom" catalyst. We demonstrate that (PtCO)2 dimers, formed dynamically through the agglomeration of mobile Pt-carbonyl species, catalyze a reaction involving the oxide support to form CO2. Pt2 dimers produce one CO2 molecule before falling apart into two adatoms, releasing the second CO. Olattice extraction only becomes facile when both the Pt-dimer and the Fe3O4 support can access metastable configurations, suggesting that substantial, concerted rearrangements of both cluster and support must be considered for reactions occurring at elevated temperature.

5.
ACS Energy Lett ; 7(1): 375-380, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35059503

RESUMO

Oxide-supported single-atom catalysts are commonly modeled as a metal atom substituting surface cation sites in a low-index surface. Adatoms with dangling bonds will inevitably coordinate molecules from the gas phase, and adsorbates such as water can affect both stability and catalytic activity. Herein, we use scanning tunneling microscopy (STM), noncontact atomic force microscopy (ncAFM), and X-ray photoelectron spectroscopy (XPS) to show that high densities of single Rh adatoms are stabilized on α-Fe2O3(11̅02) in the presence of 2 × 10-8 mbar of water at room temperature, in marked contrast to the rapid sintering observed under UHV conditions. Annealing to 50 °C in UHV desorbs all water from the substrate leaving only the OH groups coordinated to Rh, and high-resolution ncAFM images provide a direct view into the internal structure. We provide direct evidence of the importance of OH ligands in the stability of single atoms and argue that their presence should be assumed when modeling single-atom catalysis systems.

6.
Nat Commun ; 12(1): 6488, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759277

RESUMO

Oxygen exchange at oxide/liquid and oxide/gas interfaces is important in technology and environmental studies, as it is closely linked to both catalytic activity and material degradation. The atomic-scale details are mostly unknown, however, and are often ascribed to poorly defined defects in the crystal lattice. Here we show that even thermodynamically stable, well-ordered surfaces can be surprisingly reactive. Specifically, we show that all the 3-fold coordinated lattice oxygen atoms on a defect-free single-crystalline "r-cut" ([Formula: see text]) surface of hematite (α-Fe2O3) are exchanged with oxygen from surrounding water vapor within minutes at temperatures below 70 °C, while the atomic-scale surface structure is unperturbed by the process. A similar behavior is observed after liquid-water exposure, but the experimental data clearly show most of the exchange happens during desorption of the final monolayer, not during immersion. Density functional theory computations show that the exchange can happen during on-surface diffusion, where the cost of the lattice oxygen extraction is compensated by the stability of an HO-HOH-OH complex. Such insights into lattice oxygen stability are highly relevant for many research fields ranging from catalysis and hydrogen production to geochemistry and paleoclimatology.

7.
Science ; 371(6527): 375-379, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33479148

RESUMO

Understanding how the local environment of a "single-atom" catalyst affects stability and reactivity remains a challenge. We present an in-depth study of copper1, silver1, gold1, nickel1, palladium1, platinum1, rhodium1, and iridium1 species on Fe3O4(001), a model support in which all metals occupy the same twofold-coordinated adsorption site upon deposition at room temperature. Surface science techniques revealed that CO adsorption strength at single metal sites differs from the respective metal surfaces and supported clusters. Charge transfer into the support modifies the d-states of the metal atom and the strength of the metal-CO bond. These effects could strengthen the bond (as for Ag1-CO) or weaken it (as for Ni1-CO), but CO-induced structural distortions reduce adsorption energies from those expected on the basis of electronic structure alone. The extent of the relaxations depends on the local geometry and could be predicted by analogy to coordination chemistry.

8.
Phys Rev Lett ; 125(20): 206101, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258623

RESUMO

A Gaussian approximation potential was trained using density-functional theory data to enable a global geometry optimization of low-index rutile IrO_{2} facets through simulated annealing. Ab initio thermodynamics identifies (101) and (111) (1×1) terminations competitive with (110) in reducing environments. Experiments on single crystals find that (101) facets dominate and exhibit the theoretically predicted (1×1) periodicity and x-ray photoelectron spectroscopy core-level shifts. The obtained structures are analogous to the complexions discussed in the context of ceramic battery materials.

9.
Chemphyschem ; 21(16): 1788-1796, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32639106

RESUMO

Difficulties associated with the integration of liquids into a UHV environment make surface-science style studies of mineral dissolution particularly challenging. Recently, we developed a novel experimental setup for the UHV-compatible dosing of ultrapure liquid water and studied its interaction with TiO2 and Fe3 O4 surfaces. Herein, we describe a simple approach to vary the pH through the partial pressure of CO2 ( p C O 2 ) in the surrounding vacuum chamber and use this to study how these surfaces react to an acidic solution. The TiO2 (110) surface is unaffected by the acidic solution, except for a small amount of carbonaceous contamination. The Fe3 O4 (001)-( 2 × 2 )R45° surface begins to dissolve at a pH 4.0-3.9 ( p C O 2 =0.8-1 bar) and, although it is significantly roughened, the atomic-scale structure of the Fe3 O4 (001) surface layer remains visible in scanning tunneling microscopy (STM) images. X-ray photoelectron spectroscopy (XPS) reveals that the surface is chemically reduced and contains a significant accumulation of bicarbonate (HCO3 - ) species. These observations are consistent with Fe(II) being extracted by bicarbonate ions, leading to dissolved iron bicarbonate complexes (Fe(HCO3 )2 ), which precipitate onto the surface when the water evaporates.

10.
Chem Mater ; 32(9): 3753-3764, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32421058

RESUMO

Hematite (α-Fe2O3) is one of the most investigated anode materials for photoelectrochemical water splitting. Its efficiency improves by doping with Ti, but the underlying mechanisms are not understood. One hurdle is separating the influence of doping on conductivity, surface states, and morphology, which all affect performance. To address this complexity, one needs well-defined model systems. We build such a model system by growing single-crystalline, atomically flat Ti-doped α-Fe2O3(11̅02) films by pulsed laser deposition (PLD). We characterize their surfaces, combining in situ scanning tunneling microscopy (STM) with density functional theory (DFT), and reveal how dilute Ti impurities modify the atomic-scale structure of the surface as a function of the oxygen chemical potential and Ti content. Ti preferentially substitutes subsurface Fe and causes a local restructuring of the topmost surface layers. Based on the experimental quantification of Ti-induced surface modifications and the structural model we have established, we propose a strategy that can be used to separate the effects of Ti-induced modifications to the surface atomic and electronic structures and bulk conductivity on the reactivity of Ti-doped hematite.

11.
Nanoscale ; 12(10): 5866-5875, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32103229

RESUMO

The structure of a catalyst often changes in reactive environments, and following the structural evolution is crucial for the identification of the catalyst's active phase and reaction mechanism. Here we present an atomic-scale study of CO oxidation on a model Rh/Fe3O4(001) "single-atom" catalyst, which has a very different evolution depending on which of the two reactants, O2 or CO, is adsorbed first. Using temperature-programmed desorption (TPD) combined with scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we show that O2 destabilizes Rh atoms, leading to the formation of RhxOy clusters; these catalyze CO oxidation via a Langmuir-Hinshelwood mechanism at temperatures as low as 200 K. If CO adsorbs first, the system is poisoned for direct interaction with O2, and CO oxidation is dominated by a Mars-van-Krevelen pathway at 480 K.

12.
J Chem Phys ; 151(15): 154702, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640372

RESUMO

Atomic-scale investigations of metal oxide surfaces exposed to aqueous environments are vital to understand degradation phenomena (e.g., dissolution and corrosion) as well as the performance of these materials in applications. Here, we utilize a new experimental setup for the ultrahigh vacuum-compatible dosing of liquids to explore the stability of the Fe3O4(001)-(√2 × âˆš2)R45° surface following exposure to liquid and ambient pressure water. X-ray photoelectron spectroscopy and low-energy electron diffraction data show that extensive hydroxylation causes the surface to revert to a bulklike (1 × 1) termination. However, scanning tunneling microscopy (STM) images reveal a more complex situation, with the slow growth of an oxyhydroxide phase, which ultimately saturates at approximately 40% coverage. We conclude that the new material contains OH groups from dissociated water coordinated to Fe cations extracted from subsurface layers and that the surface passivates once the surface oxygen lattice is saturated with H because no further dissociation can take place. The resemblance of the STM images to those acquired in previous electrochemical STM studies leads us to believe that a similar structure exists at the solid-electrolyte interface during immersion at pH 7.

13.
Angew Chem Int Ed Engl ; 58(39): 13961-13968, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31339617

RESUMO

Single-atom catalysts (SACs) bridge homo- and heterogeneous catalysis because the active site is a metal atom coordinated to surface ligands. The local binding environment of the atom should thus strongly influence how reactants adsorb. Now, atomically resolved scanning-probe microscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption, and DFT are used to study how CO binds at different Ir1 sites on a precisely defined Fe3 O4 (001) support. The two- and five-fold-coordinated Ir adatoms bind CO more strongly than metallic Ir, and adopt structures consistent with square-planar IrI and octahedral IrIII complexes, respectively. Ir incorporates into the subsurface already at 450 K, becoming inactive for adsorption. Above 900 K, the Ir adatoms agglomerate to form nanoparticles encapsulated by iron oxide. These results demonstrate the link between SAC systems and coordination complexes, and that incorporation into the support is an important deactivation mechanism.

14.
J Phys Chem C Nanomater Interfaces ; 122(3): 1657-1669, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29492182

RESUMO

The α-Fe2O3(11̅02) surface (also known as the hematite r-cut or (012) surface) was studied using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM), noncontact atomic force microscopy (nc-AFM), and ab initio density functional theory (DFT)+U calculations. Two surface structures are stable under ultrahigh vacuum (UHV) conditions; a stoichiometric (1 × 1) surface can be prepared by annealing at 450 °C in ≈10-6 mbar O2, and a reduced (2 × 1) reconstruction is formed by UHV annealing at 540 °C. The (1 × 1) surface is close to an ideal bulk termination, and the undercoordinated surface Fe atoms reduce the surface bandgap by ≈0.2 eV with respect to the bulk. The work function is measured to be 5.7 ± 0.2 eV, and the VBM is located 1.5 ± 0.1 eV below EF. The images obtained from the (2 × 1) reconstruction cannot be reconciled with previously proposed models, and a new "alternating trench" structure is proposed based on an ordered removal of lattice oxygen atoms. DFT+U calculations show that this surface is favored in reducing conditions and that 4-fold-coordinated Fe2+ cations at the surface introduce gap states approximately 1 eV below EF. The work function on the (2 × 1) termination is 5.4 ± 0.2 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...