Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Oncol ; 11: 21-23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540895

RESUMO

There is a need for additional biomarkers for the diagnosis and prognosis of prostate cancer. MicroRNAs are a class of non-protein coding RNA molecules that are frequently dysregulated in different cancers including prostate cancer and show promise as diagnostic biomarkers and targets for therapy. Here we describe the role of micro RNA 146 a (miR-146a) which may serve as a diagnostic marker for prostate cancer, as indicated from the data presented in this report. Also, a pilot study indicated differential expression of miR-146a in prostate cancer cell lines and tissues from different racial groups. This report provides a novel insight into understanding the prostate carcinogenesis.

2.
Comput Mol Biosci ; 12(1): 12-19, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342659

RESUMO

Rhenium compounds have shown anti-cancer properties against many different types of cancer cell lines; however, the cellular signaling mechanisms involved in the cytotoxic properties of rhenium-based compounds were never deciphered or reported. In this manuscript, we report the results of an investigation done by RNA sequencing of rhenium treated A549 lung cancer cell lines along with an untreated vehicular control, analyzed by the Ingenuity Pathway Analysis (IPA) software system to decipher the core canonical pathways involved in rhenium induced cancer cell death. A549 EMT lung cancer cell lines were treated with rhenium ligand (Tricarbonylperrhenato(bathocuproine)rhenium(I), PR7) for seven days along with vehicular control. RNA was isolated from the treated and control cells and sequenced by a commercial company (PrimBio Corporation). The RNA sequencing data was analyzed by the INGNUITY software system and the core canonical pathways involved with differential gene expression were identified. Our report is showing that there are several cellular pathways involved in inducing cell death by rhenium-based compound PR7.

3.
Adv Exp Med Biol ; 1329: 153-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664238

RESUMO

The process of efferocytosis involves removal of dying or dead cells by phagocytosis. Another term "efferosome" is used which means a fluid-filled membrane vesicle which engulfs dead cells. The process of efferocytosis works in coordination with apoptosis because before the contents of apoptotic cells are bleached out, they are engulfed by efferosomes. Thus, the microenvironment is not polluted with toxic enzymes and oxidants. A defect in the apoptotic cell clearance may participate in autoimmunity and chronic inflammation for homeostasis and proper tissue development, for which removal of dead cells is essential. This also protects from chronic inflammation and autoimmunity. In different tumor types and other diseases, efferocytosis has been studied extensively and potential pathways identified. A few of the intermediates in different pathways, which create aggressive and tolerogenic tumor microenvironment, might be considered for therapeutic or interventional purposes. Since the key players in efferocytosis are macrophages and dendritic cells, development of antigen-dependent antitumor immunity is affected by efferocytosis. The literature analysis suggests that efferocytosis is an underappreciated immune checkpoint, perhaps one that might be therapeutically targeted in the setting of cancer. The current status of efferocytosis and its role in tumor microenvironment is discussed in this article.


Assuntos
Fagocitose , Microambiente Tumoral , Apoptose , Macrófagos , Transdução de Sinais
4.
Microorganisms ; 8(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114165

RESUMO

HIV noninfectious comorbidities (NICMs) are a current healthcare challenge. The situation is further complicated as there are very few effective models that can be used for NICM research. Previous research has supported the use of the HIV-1 transgenic rat (HIV-1TGR) as a model for the study of HIV/AIDS. However, additional studies are needed to confirm whether this model has features that would support NICM research. A demonstration of the utility of the HIV-1TGR model would be to show that the HIV-1TGR has cellular receptors able to bind HIV proteins, as this would be relevant for the study of cell-specific tissue pathology. In fact, an increased frequency of HIV receptors on a specific cell type may increase tissue vulnerability since binding to HIV proteins would eventually result in cell dysfunction and death. Evidence suggests that observations of selective cellular vulnerability in this model are consistent with some specific tissue vulnerabilities seen in NICMs. We identified CXCR4-expressing cells in the brain, while specific markers for neuronal degeneration demonstrated that the same neural types were dying. We also confirm the presence of gp120 and Tat by immunocytochemistry in the spleen, as previously reported. However, we observed very rare positive cells in the brain. This underscores the point that gp120, which has been reported as detected in the sera and CSF, is a likely source to which these CXCR4-positive cells are exposed. This alternative appears more probable than the local production of gp120. Further studies may indicate some level of local production, but that will not eliminate the role of receptor-mediated pathology. The binding of gp120 to the CXCR4 receptor on neurons and other neural cell types in the HIV-1TGR can thus explain the phenomena of selective cell death. Selective cellular vulnerability may be a contributing factor to the development of NICMs. Our data indicate that the HIV-1TGR can be an effective model for the studies of HIV NICMs because of the difference in the regional expression of CXCR4 in rat tissues, thus leading to specific organ pathology. This also suggests that the model can be used in the development of therapeutic options.

5.
J Can Res Updates ; 9: 102-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34354788

RESUMO

Endometrial cancer of the uterus is highly maslignant with an increase rate of morbidity and mortality in both childbearing age and postmenopausal women. Rhenium compounds have been shown to have therapeutic properties against various cancers both in vitro cell lines and in vivo animal models. In this in vitro study, we investigated the effects of a novel group of Rhenium ligands on a uterine cancer cell line. Our initial results showed that these compounds are cytotoxic, induces apoptosis and prevents tubulin polymerization in these uterine cancer cell lines, we also found these novel Rhenium compounds to be noncytocidal to healthy human blood lymphocyte cells, thus proving their safety and efficacy in future translational studies.

6.
J Solid Tumors ; 9(2): 22-27, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31447959

RESUMO

Macrophages are the first line of defense in the cellular environment in response to any antigenic or foreign invasion. Since cancer cells express antigenic molecules and create a tumor microenvironment quite different from the normal cellular environment, macrophages will attack this cancer cells as foreign Invaders. However, the cancer cells adept their ability to suppress macrophage activity by secreting compounds/proteins through unknown mechanisms and train these macrophages to aid in tumorigenesis. These macrophages are commonly known as tumor associated macrophages (TAM). In this study, our goal was to find out key regulatory molecules involved in this conversion of cancer-fighting macrophages to cancer friendly macrophages. We used African American(AA) patient derived established human prostate cancer cells along with the human derived macrophages followed by Affymetrix cDNA microarray analysis. Microarray analysis of the PCa cell exposed macrophages revealed appreciable decrease in mRNA expression of several genes associated with phagocytosis process. Aberrant expression of several noncoding RNAs that control the expression of such phagocytosis associated molecules were also evident. Increased expression of oncogenic miR such as, miR-148, 615, 515, 130, 139 and markedly decreased expression of tumor suppressive miR's MiR-3130, let7c,101,103, 383 were noted. Further, TARGET SCAN analysis demonstrated these differential expression of non-coding RNA's causing down regulation of phagocytosis promoting genes elf5A, Meg3, Tubb5, Sparcl-1, Uch-1, Bsg(CD147), Ube2v, GULP, Stabilin 1 and Pamr1. There is an increase of RAP1GAP gene that causes concomitant decrease in the expression of tubulin genes that promote cytoskeletal assembly in forming phagosomes. In addition Ingenuity pathway analysis of the gene expression data also showed upregulation of antiphagocytic genes IL-10, CD 16, IL-18 and MMP-9. Some core canonical pathways showing physiology of cellular signaling obtained by data analyzed by the Ingenuity software is confirmed a very complex mechanism still to be deciphered involved in the biology of TAM formation by which the rogue cancer cells tame their enemies, the macrophages and actually make them their helper cells to survive and propagate in the tumor microenvironment and thus prepare for epithelial mesenchymal transition for future metastasis and cancer stem cell formation and progression.

7.
J Can Res Updates ; 6(2): 25-28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781716

RESUMO

Nano technology is a cutting edge science which is now effectively used in the field of cancer biology. Smart Flare gold nanoparticles are now used often for differential gene expression analysis. In this manuscript we are reporting the use of micro RNA miR 146a and onco gene EZH2 Smart Flare probes to study their expression in different prostate cancer cell lines and the effect of novel Rhenium compounds on these genes using a flow cytometer and a Fluorescence microscope. Our results showed this novel nanotechnology can be effectively used in cancer biology to successfully detect the effect of novel drugs on oncogenes and could be a very useful tool for next generation of cancer researchers.

8.
J Bioprocess Biotech ; 6(6)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27468362

RESUMO

In order to meet the Renewable Fuels Standard demands for 30 billion gallons of biofuels by the end of 2020, new technologies for generation of cellulosic ethanol must be exploited. Breaking down cellulose by cellulase enzyme is very important for this purpose but this is not thermostable and degrades at higher temperatures in bioreactors. Towards creation of a more ecologically friendly method of rendering bioethanol from cellulosic waste, we attempted to produce recombinant higher temperature resistant cellulases for use in bioreactors. The project involved molecular cloning of genes for cellulose-degrading enzymes based on bacterial source, expressing the recombinant proteins in E. coli and optimizing enzymatic activity. We were able to generate in vitro bacterial expression systems to produce recombinant His-tag purified protein which showed cellulase like activity.

9.
Br J Pharm Res ; 4(3): 362-367, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25419517

RESUMO

AIM: To study the efficacy of novel rhenium compounds to treat triple node negative breast cancer. PLACE AND DURATION: Six (6) novel rhenium pentycarbanato compounds (PC1-6) were synthesized and triple node negative breast cancer cell lines HTB-132 and Balb/c mouse kidney cell lines were treated with each of them for 48 hours. The results were analyzed by a common trypan blue cell death assay system and statistically analyzed. PLACE AND DURATION: The compounds were synthesized, analyzed and evaluated at the Department of Chemistryof Morgan State University, Baltimore, Maryland and the Pharmaceutical Sciences Department of Elizabeth City State University campus of the University of North Carolina system. METHODOLOGY: The novel rhenium compounds were synthesized from one-pot reactions of Re2(CO)10 with the corresponding α-diimine ligands in 1-pentanol.The compounds were characterized spectroscopically. The cell lines were cultured by standard cell culture procedure and treated with each of the six compounds in DMSO for 48 hours with a negative control and a DMSO vehicular control along with a cisplatin positive control.The cytotoxicity was evaluated by standard trypan blue assay and the results were statistically analyzed. RESULTS: The trypan blueassay reveals that these compounds have significant cytotoxicity against MDA-MB-468 (HTB-132) triple node negative breast cancer cell lines and are less nephrotoxic than cisplatin. CONCLUSION: The novel rhenium compounds PC 1-6 can potentially find applications in the treatment of highly malignant triple node negative breast cancer.

10.
J Bioprocess Biotech ; 4(1): 141, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-25221731

RESUMO

Despite the tremendous success of cisplatin and other platinum-based anticancer drugs, severe toxicity and resistance to tumors limit their applications. It is believed that the coordination (formation of covalent bond) of the metal (platinum) to the nitrogen bases of DNA cause the ruptures of the cancer as well as normal cells. A search for anticancer drugs with different modes of action resulted in the synthesis of variety of novel compounds. Many of them are in clinical trials now. Recently we synthesized a series of novel rhenium pentylcarbonato compounds (PC1-PC6). The rhenium atom in each compound is coordinated (bonded) to a planar polypyridyl aromatic ligand, thereby forcing each compound to intercalate between the DNA bases. We have investigated the DNA binding properties of one of the PC-series of compounds (PC6) using electronic spectroscopy. The UV absorption titration of PC6 with DNA shows hypochromic effect with concomitant bathochromic shift of the charge transfer band at 290 nm. These results suggest that the compound PC6 binds to DNA through intercalation. It is therefore likely that the other PC-series of compounds will behave in a similar manner. Thus it is expected that these compounds will exhibit negligible or no side effect. We have observed that the PC-series of compounds are strong cytotoxic agents against lymphosarcoma (average GI50 ≈ 2±2.6 µM), PC-3 prostate (average GI50 ≈ 3±2.8 µM) and myeloid leukemia (average GI50 ≈ 3±2.8 µM) cancer cell lines. The average GI50 values of the PC-series of compounds are 2-3 less than the corresponding GI50 values of cisplatin. Also each of the PC-series of compounds exhibits less toxicity than cisplatin in the glomerular mesangial cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...