Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell Rep Med ; 4(9): 101152, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37572667

RESUMO

Male sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males. We analyzed exome sequencing data obtained from a human COVID-19 cohort (n = 2,866) using a machine-learning approach and identify a CYP19A1-activity-increasing mutation to be associated with the development of severe disease in men but not women. We further analyzed human autopsy-derived lungs (n = 86) and detect increased pulmonary CYP19A1 expression at the time point of death in men compared with women. In the golden hamster model, we show that SARS-CoV-2 infection causes increased CYP19A1 expression in the lung that is associated with dysregulated plasma sex hormone levels and reduced long-term pulmonary function in males but not females. Treatment of SARS-CoV-2-infected hamsters with a clinically approved CYP19A1 inhibitor (letrozole) improves impaired lung function and supports recovery of imbalanced sex hormones specifically in males. Our study identifies CYP19A1 as a contributor to sex-specific SARS-CoV-2 disease outcome in males. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may furnish a new therapeutic strategy for individualized patient management and treatment.


Assuntos
Aromatase , COVID-19 , Feminino , Humanos , Masculino , Aromatase/genética , Letrozol , SARS-CoV-2 , COVID-19/genética , Estradiol , Testosterona
2.
Eur Respir J ; 62(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385655

RESUMO

BACKGROUND: Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8+ T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells. METHODS: We analysed the effects of cigarette smoke on cytokine- and virus-mediated induction of the immunoproteasome in vitro, ex vivo and in vivo using RNA and Western blot analyses. CD8+ T-cell activation was determined in co-culture assays with cigarette smoke-exposed influenza A virus (IAV)-infected cells. Mass-spectrometry-based analysis of MHC class I-bound peptides uncovered the effects of cigarette smoke on inflammatory antigen presentation in lung cells. IAV-specific CD8+ T-cell numbers were determined in patients' peripheral blood using tetramer technology. RESULTS: Cigarette smoke impaired the induction of the immunoproteasome by cytokine signalling and viral infection in lung cells in vitro, ex vivo and in vivo. In addition, cigarette smoke altered the peptide repertoire of antigens presented on MHC class I molecules under inflammatory conditions. Importantly, MHC class I-mediated activation of IAV-specific CD8+ T-cells was dampened by cigarette smoke. COPD patients exhibited reduced numbers of circulating IAV-specific CD8+ T-cells compared to healthy controls and asthmatics. CONCLUSION: Our data indicate that cigarette smoke interferes with MHC class I antigen generation and presentation and thereby contributes to impaired activation of CD8+ T-cells upon virus infection. This adds important mechanistic insight on how cigarette smoke mediates increased susceptibility of smokers and COPD patients to viral infections.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Linfócitos T CD8-Positivos , Antivirais , Fumar Cigarros/efeitos adversos , Antígenos de Histocompatibilidade Classe I/metabolismo , Citocinas , Epitopos , Imunidade
3.
Environ Microbiome ; 18(1): 55, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370177

RESUMO

BACKGROUND: The fruit fly Drosophila melanogaster lives in natural habitats and has also long been used as a model organism in biological research. In this study, we used a molecular barcoding approach to analyse the airways microbiome of larvae of D. melanogaster, which were obtained from eggs of flies of the laboratory strain w1118 and from immune deficient flies (NF-kB-K), and from wild-caught flies. To assess intergenerational transmission of microbes, all eggs were incubated under the same semi-sterile conditions. RESULTS: The airway microbiome of larvae from both lab-strains was dominated by the two families Acetobacteraceae and Lactobacillaceae, while larvae from wild-caught flies were dominated by Lactobacillaceae, Anaplasmataceae and Leuconostocaceae. Barcodes linked to Anaplasmataceae could be further assigned to Wolbachia sp., which is a widespread intracellular pathogen in arthropods. For Leuconostoceae, the most abundant reads were assigned to Weissella sp. Both Wolbachia and Weissella affect the development of the insects. Finally, a relative high abundance of Serratia sp. was found in larvae from immune deficient relish-/- compared to w1118 and wild-caught fly airways. CONCLUSIONS: Our results show for the first time that larvae from D. melanogaster harbor an airway microbiome, which is of low complexity and strongly influenced by the environmental conditions and to a lesser extent by the immune status. Furthermore, our data indicate an intergenerational transmission of the microbiome as shaped by the environment.

4.
J Intern Med ; 293(5): 531-549, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36861185

RESUMO

Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.


Assuntos
Poluição do Ar , Asma , Hipersensibilidade , Animais , Adolescente , Masculino , Humanos , Criança , Feminino , Epigênese Genética , Asma/epidemiologia , Asma/etiologia , Hipersensibilidade/etiologia , Hipersensibilidade/genética , Pulmão
5.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982710

RESUMO

Knowing the molecular makeup of an organ system is required for its in-depth understanding. We analyzed the molecular repertoire of the adult tracheal system of the fruit fly Drosophila melanogaster using transcriptome studies to advance our knowledge of the adult insect tracheal system. Comparing this to the larval tracheal system revealed several major differences that likely influence organ function. During the transition from larval to adult tracheal system, a shift in the expression of genes responsible for the formation of cuticular structure occurs. This change in transcript composition manifests in the physical properties of cuticular structures of the adult trachea. Enhanced tonic activation of the immune system is observed in the adult trachea, which encompasses the increased expression of antimicrobial peptides. In addition, modulatory processes are conspicuous, in this case mainly by the increased expression of G protein-coupled receptors in the adult trachea. Finally, all components of a peripheral circadian clock are present in the adult tracheal system, which is not the case in the larval tracheal system. Comparative analysis of driver lines targeting the adult tracheal system revealed that even the canonical tracheal driver line breathless (btl)-Gal4 is not able to target all parts of the adult tracheal system. Here, we have uncovered a specific transcriptome pattern of the adult tracheal system and provide this dataset as a basis for further analyses of the adult insect tracheal system.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Traqueia/metabolismo
6.
Front Allergy ; 3: 962693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203653

RESUMO

The airway epithelial cells and overlying layer of mucus are the first point of contact for particles entering the lung. The severity of environmental contributions to pulmonary disease initiation, progression, and exacerbation is largely determined by engagement with the airway epithelium. Despite the cellular cross-talk and cargo exchange in the microenvironment, epithelial cells produce miRNAs associated with the regulation of airway features in asthma. In line with this, there is evidence indicating miRNA alterations related to their multifunctional regulation of asthma features in the conducting airways. In this review, we discuss the cellular components and functions of the airway epithelium in asthma, miRNAs derived from epithelial cells in disease pathogenesis, and the cellular exchange of miRNA-bearing cargo in the airways.

7.
Front Allergy ; 3: 876673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187164

RESUMO

Airway remodeling is an umbrella term for structural changes in the conducting airways that occur in chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). The pathobiology of remodeling involves multiple mesenchymal and lymphoid cell types and finally leads to a variety of hardly reversible changes such as hyperplasia of goblet cells, thickening of the reticular basement membrane, deposition of collagen, peribronchial fibrosis, angiogenesis and hyperplasia of bronchial smooth muscle cells. In order to develop solutions for prevention or innovative therapies, these complex processes must be understood in detail which requires their deconstruction into individual building blocks. In the present manuscript we therefore focus on the role of the airway epithelium and introduce Drosophila melanogaster as a model. The simple architecture of the flies' airways as well as the lack of adaptive immunity allows to focus exclusively on the importance of the epithelium for the remodeling processes. We will review and discuss genetic and environmentally induced changes in epithelial structures and molecular responses and propose an integrated framework of research for the future.

8.
Genes (Basel) ; 13(8)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36011331

RESUMO

Alveolar type II (ATII) cells are essential for the maintenance of the alveolar homeostasis. However, knowledge of the expression of the miRNAs and miRNA-regulated networks which control homeostasis and coordinate diverse functions of murine ATII cells is limited. Therefore, we asked how miRNAs expressed in ATII cells might contribute to the regulation of signaling pathways. We purified "untouched by antibodies" ATII cells using a flow cytometric sorting method with a highly autofluorescent population of lung cells. TaqMan® miRNA low-density arrays were performed on sorted cells and intersected with miRNA profiles of ATII cells isolated according to a previously published protocol. Of 293 miRNAs expressed in both ATII preparations, 111 showed equal abundances. The target mRNAs of bona fide ATII miRNAs were used for pathway enrichment analysis. This analysis identified nine signaling pathways with known functions in fibrosis and/or epithelial-to-mesenchymal transition (EMT). In particular, a subset of 19 miRNAs was found to target 21 components of the TGF-ß signaling pathway. Three of these miRNAs (miR-16-5p, -17-5p and -30c-5p) were down-modulated by TGF-ß1 stimulation in human A549 cells, and concomitant up-regulation of associated mRNA targets (BMPR2, JUN, RUNX2) was observed. These results suggest an important role for miRNAs in maintaining the homeostasis of the TGF-ß signaling pathway in ATII cells under physiological conditions.


Assuntos
Células Epiteliais Alveolares , MicroRNAs , Animais , Transição Epitelial-Mesenquimal/genética , Humanos , Pulmão/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética
9.
Front Microbiol ; 13: 834622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903477

RESUMO

Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.

10.
Environ Pollut ; 309: 119696, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780997

RESUMO

Early life environmental influences such as exposure to cigarette smoke (CS) can disturb molecular processes of lung development and thereby increase the risk for later development of chronic respiratory diseases. Among the latter, asthma and chronic obstructive pulmonary disease (COPD) are the most common. The airway epithelium plays a key role in their disease pathophysiology but how CS exposure in early life influences airway developmental pathways and epithelial stress responses or survival is poorly understood. Using Drosophila melanogaster larvae as a model for early life, we demonstrate that CS enters the entire larval airway system, where it activates cyp18a1 which is homologues to human CYP1A1 to metabolize CS-derived polycyclic aromatic hydrocarbons and further induces heat shock protein 70. RNASeq studies of isolated airways showed that CS dysregulates pathways involved in oxidative stress response, innate immune response, xenobiotic and glutathione metabolic processes as well as developmental processes (BMP, FGF signaling) in both sexes, while other pathways were exclusive to females or males. Glutathione S-transferase genes were further validated by qPCR showing upregulation of gstD4, gstD5 and gstD8 in respiratory tracts of females, while gstD8 was downregulated and gstD5 unchanged in males. ROS levels were increased in airways after CS. Exposure to CS further resulted in higher larval mortality, lower larval-pupal transition, and hatching rates in males only as compared to air-exposed controls. Taken together, early life CS induces airway epithelial stress responses and dysregulates pathways involved in the fly's branching morphogenesis as well as in mammalian lung development. CS further affected fitness and development in a highly sex-specific manner.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Poluição por Fumaça de Tabaco , Animais , Células Cultivadas , Drosophila melanogaster , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Masculino , Mamíferos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Nicotiana
11.
Immun Inflamm Dis ; 10(8): e675, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35894712

RESUMO

Early life exposures to antibiotics negatively impact respiratory health and are associated with an increased risk of childhood asthma. It is explained that the lung is inclined to develop chronic inflammatory phenotypes due to early antibiotic alteration in the gut microbiome. We investigated whether a gut-targeted antibiotic has an impact on the lung microbiome and on pulmonary immunity. Fourteen-day old C57BL/6 mice were administered with vancomycin via oral gavage for 3 days (1 time/day). Control groups were treated with clarithromycin and phosphate-buffered saline (PBS), respectively. Five days after treatment, the cecum and lung microbiome, and pulmonary immune response were analyzed. Vancomycin treatment decreased the relative abundance of the genera Clostridium XIVa and Alistipes and the family Lachnospiraceae in the cecum. Furthermore, the relative abundance of the family Parabacteroidetes and the genus Lactobacillus were increased, whereas the abundance of the phylum Firmicutes was decreased. In the lung, vancomycin treatment reduced bacteria belonging to Clostridium XIVa and the family Lachnospiraceae as compared to those in the clarithromycin treated group. Lung cells from the vancomycin-treated mice released higher levels of interleukin (IL)-4 and IL-13 compared to those from the PBS group, and increased levels of IL-6, IFN-γ, and TNFα compared to lung cells from the clarithromycin and PBS treated mice. Our pilot study suggests that alteration in the gut microbiome could affect bacterial composition and immunity of the lung hence proposes a gut-lung microbiome axis in early life.


Assuntos
Microbiota , Vancomicina , Animais , Antibacterianos/farmacologia , Bactérias , Claritromicina/farmacologia , Imunidade , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Projetos Piloto , Vancomicina/efeitos adversos
12.
Pediatr Allergy Immunol ; 33(4): e13773, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35470937

RESUMO

In order to summarize recent research on the prevention of allergies-particularly asthma-and stimulate new activities for future initiatives, a virtual workshop sponsored by the EAACI Clemens von Pirquet foundation and EUFOREA was held in October 2021. The determinants of the "allergic march" as well as the key messages from intervention studies were reviewed by an international faculty of experts. Several unmet needs were identified, and a number of priorities for future studies were proposed.


Assuntos
Asma , Hipersensibilidade , Asma/epidemiologia , Asma/prevenção & controle , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/prevenção & controle
13.
Thorax ; 77(2): 191-195, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34389656

RESUMO

To examine the role of smoking on the bacterial community composition of the upper and the lower respiratory tract, a monocentric, controlled prospective study was performed, including healthy smokers, ex-smokers and never-smokers. Smokers were further grouped according to their smoking history. Bacterial diversity was analysed using a molecular barcoding approach based on directly extracted DNA. Our study shows for the first time distinct bacterial response patterns in the upper and lower respiratory tract to cigarette smoking leading to a higher abundance of opportunistic pathogens. The clinical significance of these dysbioses for health needs to be further explored.


Assuntos
Microbiota , Fumaça , Humanos , Pulmão , Estudos Prospectivos , Fumar/efeitos adversos
14.
Artigo em Inglês | MEDLINE | ID: mdl-34886409

RESUMO

Emerging research suggests environmental exposures before conception may adversely affect allergies and lung diseases in future generations. Most studies are limited as they have focused on single exposures, not considering that these diseases have a multifactorial origin in which environmental and lifestyle factors are likely to interact. Traditional exposure assessment methods fail to capture the interactions among environmental exposures and their impact on fundamental biological processes, as well as individual and temporal factors. A valid estimation of exposure preconception is difficult since the human reproductive cycle spans decades and the access to germ cells is limited. The exposome is defined as the cumulative measure of external exposures on an organism (external exposome), and the associated biological responses (endogenous exposome) throughout the lifespan, from conception and onwards. An exposome approach implies a targeted or agnostic analysis of the concurrent and temporal multiple exposures, and may, together with recent technological advances, improve the assessment of the environmental contributors to health and disease. This review describes the current knowledge on preconception environmental exposures as related to respiratory health outcomes in offspring. We discuss the usefulness and feasibility of using an exposome approach in this research, advocating for the preconception exposure window to become included in the exposome concept.


Assuntos
Expossoma , Hipersensibilidade , Pneumopatias , Exposição Ambiental/estatística & dados numéricos , Humanos , Estilo de Vida , Pneumopatias/induzido quimicamente
15.
Clin Exp Allergy ; 51(12): 1577-1591, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34514658

RESUMO

BACKGROUND: Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS: Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2  levels were measured using ELISA. RESULTS: Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2  levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS: While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.


Assuntos
MicroRNAs , Rinite Alérgica , Alérgenos , Dessensibilização Imunológica , Humanos , Imunidade Inata , Linfócitos , MicroRNAs/genética , Prostaglandinas , Receptores de Prostaglandina/genética , Escarro
16.
Nat Commun ; 12(1): 4957, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400653

RESUMO

Influenza during pregnancy can affect the health of offspring in later life, among which neurocognitive disorders are among the best described. Here, we investigate whether maternal influenza infection has adverse effects on immune responses in offspring. We establish a two-hit mouse model to study the effect of maternal influenza A virus infection (first hit) on vulnerability of offspring to heterologous infections (second hit) in later life. Offspring born to influenza A virus infected mothers are stunted in growth and more vulnerable to heterologous infections (influenza B virus and MRSA) than those born to PBS- or poly(I:C)-treated mothers. Enhanced vulnerability to infection in neonates is associated with reduced haematopoetic development and immune responses. In particular, alveolar macrophages of offspring exposed to maternal influenza have reduced capacity to clear second hit pathogens. This impaired pathogen clearance is partially reversed by adoptive transfer of alveolar macrophages from healthy offspring born to uninfected dams. These findings suggest that maternal influenza infection may impair immune ontogeny and increase susceptibility to early life infections of offspring.


Assuntos
Infecções Bacterianas/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/virologia , Parto , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Hematopoese , Humanos , Influenza Humana/imunologia , Pulmão/imunologia , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL , Mães , Poli I-C , Gravidez
17.
Allergol Select ; 5: 162-179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079922

RESUMO

An expert workshop in collaboration of the German Society of Allergy and Clinical Immunology (DGAKI) and the Japanese Society of Allergy (JSA) provided a platform for key opinion leaders of both countries aimed to join expertise and to highlight current developments and achievements in allergy research. Key domains of the meeting included the following seven main sections and related subchapters: 1) basic immunology, 2) bronchial asthma, 3) prevention of allergic diseases, 4) food allergy and anaphylaxis, 5) atopic dermatitis, 6) venom allergy, and 7) upper airway diseases. This report provides a summary of panel discussions of all seven domains and highlights unmet needs and project possibilities of enhanced collaborations of scientific projects.

18.
Int J Obes (Lond) ; 45(7): 1623-1627, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34002034

RESUMO

BACKGROUND: Active smoking has been reported among 7% of teenagers worldwide, with ages ranging from 13 to 15 years. An epidemiological study suggested that preconceptional paternal smoking is associated with adolescent obesity in boys. We developed a murine adolescent smoking model before conception to investigate the paternal molecular causes of changes in offspring's phenotype. METHOD: Male and female C57BL/6J mice were exposed to increasing doses of mainstream cigarette smoke (CS) from onset of puberty for 6 weeks and mated with room air (RA) controls. RESULTS: Thirteen miRNAs were upregulated and 32 downregulated in the spermatozoa of CS-exposed fathers, while there were no significant differences in the count and morphological integrity of spermatozoa, as well as the proliferation of spermatogonia between CS- and RA-exposed fathers. Offspring from preconceptional CS-exposed mothers had lower body weights (p = 0.007). Moreover, data from offspring from CS-exposed fathers suggested a potential increase in body weight (p = 0.062). CONCLUSION: We showed that preconceptional paternal CS exposure regulates spermatozoal miRNAs, and possibly influences the body weight of F1 progeny in early life. The regulated miRNAs may modulate transmittable epigenetic changes to offspring, thus influence the development of respiratory- and metabolic-related diseases such as obesity, a mechanism that warrants further studies for elaborate explanations.


Assuntos
Peso Corporal/efeitos dos fármacos , MicroRNAs/genética , Exposição Paterna , Espermatozoides/química , Fumar Tabaco/efeitos adversos , Animais , Epigênese Genética/genética , Feminino , Masculino , Camundongos , Gravidez , Transcriptoma/genética
19.
Sci Rep ; 11(1): 4441, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627715

RESUMO

E-cigarettes are heavily advertised as healthier alternative to common tobacco cigarettes, leading more and more women to switch from regular cigarettes to ENDS (electronic nicotine delivery system) during pregnancy. While the noxious consequences of tobacco smoking during pregnancy on the offspring health are well-described, information on the long-term consequences due to maternal use of e-cigarettes do not exist so far. Therefore, we aimed to investigate how maternal e-nicotine influences offspring development from earliest life until adulthood. To this end, virgin female Drosophila melanogaster flies were exposed to nicotine vapor (8 µg nicotine) once per hour for a total of eight times. Following the last exposure, e-nicotine or sham exposed females were mated with non-exposed males. The F1-generation was then analyzed for viability, growth and airway structure. We demonstrate that maternal exposure to e-nicotine not only leads to reduced maternal fertility, but also negatively affects size and weight, as well as tracheal development of the F1-generation, lasting from embryonic stage until adulthood. These results not only underline the need for studies investigating the effects of maternal vaping on offspring health, but also propose our established model for analyzing molecular mechanisms and signaling pathways mediating these intergenerational changes.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Exposição Materna/efeitos adversos , Nicotina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/etiologia , Sistema Respiratório/efeitos dos fármacos , Animais , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Gravidez , Fatores Sexuais , Vaping/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...